
Technical Document 2984
September 1997

CMS-2 to Ada
Translator Evaluation
Final Report

W

Ron Iwamiya
Hans Mumm
Bob Ollerton
Bryan Riegle
NRaD

Currie Colket
SPAWAR

19971128 027

; reieas?: "istnbuticn is unlimited.

Naval Command, Control and Ocean Surveillance Center
RDT&E Division, San Diego, CA 92152-5001

Technical Document 2984
September 1997

CMS-2 to Ada
Translator Evaluation
Final Report

Ron Iwamiya
Hans Mumm
Bob Ollerton
Bryan Riegle
NRaD

Currie Colket
SPAWAR

Approved for public release; distribution is unlimited.

V
Naval Command, Control and Ocean Surveillance Center
RDT&E Division, San Diego, CA 92152-5001

:&LI 4

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5001

H. A. WILLIAMS, CAPT, USN " R c KQ,B

Commanding Officer Executjve Djrector

ADMINISTRATIVE INFORMATION

The work detailed in this document was performed for the Office of Naval Research (ONR
311) by the Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Divi-
sion (NRaD). Authors from the following entities contributed to this report: the Systems Branch
Code D4122; the Technology Branch, Code D4123; the Tactical and Battle Cube Systems SSA
Branch, Code D871, and SPAWAR PMW 133-2.

M WM y „ , Under authority of M. W. Morgan. Head R B Volker Head

Systems Branch Advanced Concepts and
Technology Division

ACKNOWLEDGEMENTS

The authors wish to thank the reviewers of this document. These reviewers include Mr Jim
Palmer, Johns Hopkins University Applied Physics Laboratory; Dr. Noah Prywes Computer
Command and Control Company; Dr. Charlie Sampson, Computer Sciences Corporation- Dr
Michael Sharpiro, NRaD; and Mr. John Bergey, Software Engineering Institute

SB

EXECUTIVE SUMMARY

OBJECTIVE

The objective of this evaluation was to determine the maturity of the CMS-2 to Ada translators and
associated tools, to determine the capabilities of these translators, and to provide information to CMS-2
project managers to assist them in the evaluation of costs and risks of translating CMS-2 to Ada. The
evaluation was conducted by NRaD with funding from the Office of Naval Research.

RESULTS

This report contains the results of an in-depth evaluation of three CMS-2 to Ada translators. The
translators evaluated were developed by the Johns Hopkins University Applied Physics Laboratory,
Computer Command and Control Company, and Computer Sciences Corporation. The evaluation was
done in three phases: Quick Look, Stress Testing, and Reengineer Until Ada Code Executes Correctly.
The report contains a description of the evaluation process, the detailed results of the three phases of the
evaluation, lessons learned, recommendations, an annotated bibliography, a description of relevant
translation analysis tools, and an explanation of the metrics collected. Metrics collected included person-
hours spent in all aspects of the evaluation, McCabe and Halstead metrics, source lines of code count,
conformance of Ada source code to Software Productivity Consortium Guidelines, and metrics that
measure the difficulty of conversion. Six projects contributed CMS-2 source code. Source code analysis
tools were used to examine the quality of the CMS-2 code and corresponding Ada produced by the
translators.

RECOMMENDATIONS

Some of the recommendations contained in this report are:

• Recommendations to CMS-2 project managers when considering translation
• Do not translate unless expertise is available
• If seriously considering translation, do it soon
• Analyze CMS-2 code for suitability for translation

• Recommendations to the Navy for advancing translator technology
• Before investing resources in improving CMS-2 to Ada translators, managers of deployed CMS-2

systems should be polled to find out their plans regarding translation
• Support development of Ada quality improvement tools

• Recommendations to translator vendors
• Minimize global interfaces/declarations
• Avoid use of nonstandard or proprietary math libraries
• Produce portable Ada code

• Recommendations to reengineering tool vendors
• Develop Ada quality improvement tools that remove GO TO statements, remove dead code,

convert global objects to local objects, and perform automated information hiding

Contents

1 . INTRODUCTION 1-1

BACKGROUND 1-1

PURPOSE OF THE EVALUATION AND KEY ISSUES 1-2

USERS OF THE RESULTS 1-3

PURPOSE OF THIS REPORT 1-3

CONTENTS OF REPORT 1-4

2 . OVERVIEW OF THE TRANSLATOR EVALUATION PROCESS 2-1

TRANSLATOR EVALUATION 2-1

3 . SUMMARY OF TRANSLATOR/TRANSLATION RESULTS 3-1

TRANSLATOR PROFILES 3-1

CONCLUSIONS 3-1

4 . LESSONS LEARNED AND OPINIONS 4-1

LESSONS LEARNED 4-1

OPINIONS 4-3

5 . RECOMMENDATIONS 5-1

RECOMMENDATIONS TO CMS-2 PROJECT MANAGERS WHEN CONSIDERING
TRANSLATION 5-1

RECOMMENDATIONS TO PROJECT MANAGERS AFTER DECIDING TO USE
TRANSLATOR TECHNOLOGY 5-3

RECOMMENDATIONS TO THE NAVY FOR ADVANCING TRANSLATOR
TECHNOLOGY 5-4

RECOMMENDATIONS TO TRANSLATOR VENDORS 5-7

ALL VENDORS 5-7

APL 5-8

CCCC 5-9

RECOMMENDATIONS TO REENGINEERING TOOL VENDORS 5-11

SUGGESTED TRANSLATION STEPS 5-12

6. REFERENCES 6_.,

7 . ANNOTATED BIBLIOGRAPHY 3

TRANSLATING INTO ADA 3

OTHER REENGINEERING PAPERS 3

II

APPENDIX A : RESULTS OF QUICK LOOK INSPECTION A-1

QA9 SELECTED AS SAMPLE A-1

OVERVIEW OF STEPS A-2

COMPILATION RESULTS A-2

SOURCE LINES OF CODE COMPARISONS A-14

HALSTEAD METRICS A-14

MCCABE CYCLOMATIC COMPLEXITY METRIC A-14

CONFORMANCE TO SOFTWARE PRODUCTIVITY CONSORTIUM GUIDELINESA-22

CONCLUSIONS A-27

APPENDIX B : RESULTS OF STRESS TESTING B-1

TEST CASES B-1

MTASS STRESS TESTING B-1

CONCEPTUAL DIFFERENCES AMONG TRANSLATORS B-2

BENEFITS OF STRESS TESTING B-3

EVALUATION OF TRANSLATION RESULTS B-4

EXAMINATION OF COMPILATION RESULTS, B-5

EXAMINATION OF SLOC IN COMPILE INFORMATION TABLE B-6

EXPLANATION OF ADA COMPILATIONS B-6

INVESTIGATION OF COMPILATION ERRORS B-7

PROJECT-CONTRIBUTED LEGACY CMS-2 SAMPLES B-8

CONCLUSIONS Ill

APPENDIX C : RESULTS OF REENGINEER UNTIL ADA CODE EXECUTES
CORRECTLY C-1

OVERVIEW C-1

LINE COUNT COMPARISONS C-2

DIFFICULTY OF CONVERSION METRICS C-4

WEIGHTED MCCABE AND PROGRAM SIZE METRICS C-6

ADA 95 QA9: REENGINEERING A MIXED-MODE MATH TEST IN ADA 95 C-8

CONCLUSIONS C-9

APPENDIX D : METRICS INTERPRETATION D-1

in

MCCABE CYCLOMATIC COMPLEXITY D-2

HALSTEAD METRICS D_6

SOURCE LINES OF CODE (SLOC) D-6

SOFTWARE PRODUCTIVITY CONSORTIUM (SPC) METRICS D-7

PERSON-HOURS D-12

DIFFICULTY OF CONVERSION HOURS (DOCH) D-13

DIFFICULTY OF CONVERSION SLOC (DOCS) D-13

TRANSLATION SOURCE LINES OF CODE RATIO D-13

APPENDIX E : POTENTIAL FOLLOW-ON WORK E-1

IMPROVE QUALITY OF TRANSLATED ADA SOURCE E-1

EXAMINE PERFORMANCE OF EXECUTING ADA COMPONENTS E-2

EVALUATE OTHER TRANSLATOR CAPABILITIES E-2

APPENDIX F : RECORD FOR REENGINEER UNTIL ADA CODE EXECUTES
CORRECTLY F.i

APPENDIX G : PERSON-HOURS G-1

APPENDIX H : ADA 95 QA9: REENGINEERING A MIXED MODE MATH TEST IN
ADA 95 H-1

APPENDIX I: ADA QUALITY AND STYLE CRITERIA M

APPENDIX J : ADA LINE COUNTER j-1

ADA SOURCE FOR SLOC COUNTER (ASLOC) j-1

APPENDIX K : SAMPLE SOURCE CODE: QA9 PROCEDURE QTSYNOPS CMS-2
AND TRANSLATOR PRODUCED ADA K-1

CMS-2 QTSYNOPS K-1

APL GENERATED ADA QTSYOPS K-3

CCCC GENERATED ADA QTSYOPS K-6

TRADA GENERATED ADA QTSYNOPS K-9

APPENDIX L : TRANSLATION ANALYSIS TOOLS L-1

IV

APPENDIX M : MK-2 CMS-2L AND ADA SOURCE CODE M-1

SOURCE CODE LINES OF CODE (SLOC) M-2

NAMING CONVENTIONS M-3

ELIMINATION OF INTERMEDIATE VARIABLES M-3

USE OF STANDARD PACKAGES M-4

MEMORY MANAGEMENT M-4

PERFORMANCE M-6

POSITION TO REENGINEER M-7

ORIGINAL CMS-2L MK-2 FIRE CONTROL SYSTEM M-8

ADA TRANSLATION USING APL TRANSLATOR M-13

APL TRANSLATOR COMMON PACKAGES M-19

ADA TRANSLATION USING CCCC TRANSLATOR M-23

CCCC TRANSLATOR COMMON PACKAGE M-37

ADA REENGINEERING OF MK-2 CODE BY HAND M-49

Figures

1. High-level strategy: translate, reengineer, both , or discontinue 5-7

2. QA9 CMS-2 and Translated Ada QA9 Line Counts A-16

3. Halstead Metrics A_17

4. McCabe Cyclomatic Complexity Metric -1 A-18

5. McCabe Complexity versus Percent of Ada QA9 A-21

6. DD-Path graph for paths program D-31

7. DD-Path graph for paths program with unreachable code D-4

8. Procedure Accessing Global Variables without Renaming and without a

"Use Clause" D-9

9. Procedure Accessing Global Variable with a "Use Clause" D-9

10. Procedure Accessing Global Variables with a Renamed Addition Operator and

without a "Use Clause" D-9

11. Procedure Accessing Global Variables with a Renamed Server Package and

Addition Operator and without a "Use Clause" D-10

12. Ada 95 Procedure Accessing Global Variable with a "Use Type Clause" and no

Renaming D-10

13. Ada 95 Procedure Accessing Global Variables with a "Use Type Clause" and with a

Renamed Server Package D-10

14. Ada 95 Procedure Using Access-Subprograms with a "Use Type Clause" and with a

Renamed Server Package D-12

15. Class Structure for Target Object H-2

16. Class Structure for the Operation Object H-3

17. Information Structure for the Integer-based Test_Case_Subclasses H-4

18. Information Structure for the Real-based Test Case Subclasses H-5

19. Information Structure for the Fixed-based Test_Case Subclasses Fixed-based

Test_Case Subclasses H-6

VI

Tables

1. Computers and Software Products Used by Phase of Evaluation -1 2-3

2. Software Products vs. Computer 2.5

3. Projects Contributing CMS-2 Source Code 2-6

4. Key Characteristics of CMS-2 vs. Ada 95 2-7

5. Translator Profiles 3-3

6. Summary of Translator Evaluation Results 3-5

7. APL QA9 Package Specification Compilation Error List Using the GNAT

Compiler-1 A-4

8. APL QA9 Package Body Compilation Error List Using the GNAT Compiler -1 A-7

9. CCCC QA9 Package Body Compilation Error List Using the GNAT Compiler.. A-12

10.TRADA QA9 Package Specification Compilation Error List Using the GNAT

Compiler A-13

11. Total SPC Ada Style Violations of Ada Usage (QA9 Produced by Translators) A-23

12. Details on SPC Ada Style Violations: Ada QA9 Produced by APL A-24

13. Details on SPC Ada Style Violations: Ada QA9 Produced by CCCC A-25

14. Details on SPC Ada Style Violations: Ada QA9 Produced by TRADA A-26

15. Stress Testing Using MTASS Test Suite - Translation Information -1 B-9

16. Stress Testing using MTASS Test Suite - Compile Information -1 B-23

17. Translating and Compiling Using Project-Contributed Legacy CMS-2 Source

Code -1 B-37

18.QA9 Source Lines of Code by Translator at Various Stages

(include Predefined) -1 C-3

19.QA9 Predefined Utilities Source Lines of Code by Translator C-4

20.QA9 Difficulty of Conversion Person Hours C-5

21.QA9 Difficulty of Conversion SLOC C-6

22.QA9 Weighted McCabe Complexity Metric C-7

23.QA9 Program Size C-9

24. Hours Performing Preliminary Tasks -1 G-1

VII

25. Hours Performing Quick Look Inspection Tasks -1 G-5

26. Hours Performing Stress Testing Tasks -1 G-8

27. Hours Performing Reengineering Tasks -1 G-10

28. Hours Performing General Tasks and Final Report G-12

29. Person-hours by work phase for QA9 translations G-14

30.QA9 Person-Hours/100 SLOC Translated G-15

31. Ada Quality and Style Criteria -1 1-1

32. Description and POCs for Analysis Tools Applied -1 L-1

33. Description and POCs for Potentially Useful Analysis Tools -1 L-2

34.MK-2 Source Lines of Code Counts M-1

VIII

1 . INTRODUCTION

BACKGROUND

Over the last three decades the Navy has made a large investment in development of software
using Compiler Monitor System-2 (CMS-2). Many of these systems will be required to meet the
Navy's needs for at least another decade, and will need periodic upgrades. However, they cannot
easily be upgraded to support requirements of the warfighter. The hardware platforms are based on
1960s architecture that is very expensive to maintain. CMS-2 software executes on AN/UYK-7,
AN/UYK-20, AN/UYK-43, AN/UYK-44, and AN/AYK-14 Navy standard hardware which is
increasingly expensive to maintain. The CMS-2 language is no longer taught and few new
programmers are willing to learn and use the language. No commercial support exists for the old
hardware environments or the CMS-2 computer language and associated software tools.

Upgrading to satisfy new mission requirements also poses another problem. The vast majority of
these systems have already reached their performance and memory limitations. Additionally, the
high cost of developing applications for archaic, non-supported environments makes such
development very expensive and risky. In such situations, the Navy must migrate or augment these
systems using modern technology.

In upgrading, a program manager faces the problem of converting the existing system to a
modern system. This means eliminating the operational CMS-2 code, UYK computer, and
associated support software. One approach could reengineer at the requirements/design level and
develop new code in Ada. This approach involves no code translation. A second approach could
capture the legacy system as a starting point. By translating the CMS-2 code into Ada, development
and execution of the operational system can move to modern computers. The translated Ada code
then serves as the base for upgrading the new system. The new software might be a mix of
translated Ada and newly developed Ada for portions of the legacy system that are not suited for
translation (for example, 10 to special devices, direct code, executive service calls). Besides taking
advantage of the existing CMS-2 code, this approach has tremendous potential for cost and schedule
savings to satisfy the mission requirements.

Advantages of using modern technology are:
• commercial, modern, faster, very powerful hardware architectures;
• modern programming languages (e.g., Ada 95, C++);
• modern interfacing/networking technologies; and
• modern software engineering environments with powerful tools capable of providing high

quality systems with high productivity.

The ONR commisioned NRaD to conduct a hands-on evaluation of existing CMS-2 to Ada
translators using controlled experiments. These experiments were performed using representative
samples of operational CMS-2 code. This report contains the results of the experiments, lessons
learned and recommendations.

In discussing capabilities of software "translator" programs, keep in mind that the three products
evaluated (APL, CCCC, TRAD A) perform operations much closer to what is sometimes called
transliteration rather than complete translation. Transliteration is only the first step in the translation
process. In natural language translation, such as from French to English, this first step changes the

1-1

words and sentences from the original French to the English equivalents. The process continues by
changing the resulting text into good, polished English. Source code translators convert CMS-2
statements to equivalent Ada statements - from CMS-2 constants, variables, procedure calls and
GOTO statements to Ada constants, variables, procedure calls, and GOTO statements.
Transliteration produces Ada that mirrors the CMS-2 code in both program structure and
complexity, as measured by Halstead and McCabe metrics.

Transliteration does not:
• Reduce code complexity.
• Perform significant code restructuring.
• Produce Ada that conforms to guidelines.
• Produce Ada that makes strong use of information hiding.
• Make source code quality improvements, such as removal of variables that are defined

but unused or removal of dead code.
• Take advantage of standard Ada packages (e.g., Ada.Calendar)

Those are additional actions that should be part of a complete translation process. The translation
process can also include modifications required for execution on new target hardware (for example,
a SPARC rather than a UYK-43), conversion of direct code to Ada, modifications to support
different input or output devices, and other changes needed for correct compilation and execution of
the Ada code.

PURPOSE OF THE EVALUATION AND KEY ISSUES

The purpose for conducting this evaluation are listed below with associated key issues. These
key issues were addressed at the beginning of this study and serve as a guide for the evaluation.

1. To determine the overall maturity of the CMS-2 to Ada translators and associated tools.

Key issues are:
• Are translators at or near "production" quality?
• Are translators usable for very large systems?
• Can translators be easily learned by new users?
• Are translation capabilities lacking that could be provided with new tools (for example,

removal of GOTOs and unused variables)?
• How useful are the CMS-2 analysis tools, and the assembler to CMS-2 design extractor in

the CMS-2 to Ada translation process?

2. To determine the capabilities of existing CMS-2 to Ada translators.

Key issues are:
• What is the quality (for example, Halstead and McCabe metrics and conformance to Ada

guidelines) of the Ada code produced?
• What is the CMS-2 construct coverage provided by the translator?
• Are the CMS-2 constructs translated accurately?
• What is the manpower effort required to translate the code?

1-2

• What is the manpower effort required to get the code to compile?
• What is the manpower effort required to get the code to execute correctly?
• What are the computer resources required to translate code?

3. To provide information to project managers to assist them in the evaluation of costs and risks of
translating CMS-2 to Ada.

Key issues are:
• What are the dollar, resource, and time costs associated with a translation process?
• How much specialized training is required to support the translation process?
• How much of a schedule reduction is possible with a translation process?
• What is the quality of a system produced using a translation process?
• What is the impact of direct code to the overall translation process?
• What are the technical barriers associated with a translation process?
• What are the risks associated with using a translation process?
• Is it practical to consider a translation process?

The program manager needs information on person-hours, resource costs, risks, technical issues,
and feasibility to evaluate the practicality of using a translation approach for the project. In making
a decision to reengineer at the specification or design level or to reengineer using a translation
process, the answers to the above questions help provide insight towards making the necessary
engineering tradeoffs. Depending on the amount of redesign required, a program manager might
even use a mixed approach where subsystems requiring significant change are redesigned from
scratch and subsystems that are relatively stable are translated. Information throughout this report
will assist the CMS-2 project manager in answering these questions for the project scenario. The
answers to these questions are prerequisite to making sound reengineering decisions.

USERS OF THE RESULTS

Definite or potential users of the evaluation results include the Office of Naval Research (ONR)
to address science and technology deficiencies, managers and software engineers of projects
considering transition from CMS-2 to Ada, and developers of the translators and associated tools as
feedback on the current state of their products.

PURPOSE OF THIS REPORT

This report provides the results of the translator evaluations and related findings. It is intended
primarily for the program manager and their technical representatives.

1-3

CONTENTS OF REPORT

This report contains the following:
An overview of the evaluation process*
An overview of the results*
Lessons learned*
Recommendations*
Results of quick look inspection
Results of stress testing
Results of reengineering until Ada code executes correctly
An interpretation of the metrics collected
A discussion of potential follow-on work
References
Annotated bibliography
Other metrics

Throughout this report, when we say that a sample "compiled", we mean that it ran through the
compiler with no compiler detecting errors.

Point of contact for information on this report is:
Hans Mumm
NCCOSC RDT&E DIV D4122
San Diego, CA
92152-5000
mumm@nosc.mil
(619)553-4004
(619)553-4808 (fax)

' The first four sections are key to PM decisions. The remainder is supporting evidence and is included for technical
completeness

1-4

2 . OVERVIEW OF THE TRANSLATOR EVALUATION PROCESS

The CMS-2 programming language is comprised of many dialects. Each is almost a full set of the
language. The five principal dialects are CMS-2Y, CMS-2L, CMS-2M, CMS-2A, and CMS-2K.
Translators were exercised with CMS-2Y, CMS-2M and CMS-2L source code samples selected to
exercise all major CMS-2 constructs. The CMS-2A and CMS-2K dialects only differ from the three
dialects exercised in the direct code that they allowed. The CMS-2 to Ada translators do not
translate the embedded assembler, but rather bypass it or convert it to Ada comments. The Machine
Transferable Support Software (MTASS) CMS-2 User Handbook describes the syntax (structure)
and semantics (meaning) of the CMS-2 language.

TRANSLATOR EVALUATION

The translator evaluation was done in three phases. The initial phase was Quick Look
Inspection. The purpose of this phase was to ensure that all products and resources were ready for
subsequent stress testing phases. During this phase a small CMS-2 sample for CMS-2L, less than
5000 source lines of code (SLOC), was CMS-2 compiled and executed. This executing CMS-2
sample was the baseline for comparisons with executions of equivalent code translated to Ada in the
third phase. The Quick Look Inspection sample chosen was the MTASS UYK-43 Quality
Assurance 9 (QA9) test. QA9 was developed to examine the MTASS CMS-2 compiler's ability to
generate arithmetic code that provides acceptable results when executing on an AN/UYK-43 MIL-
STD computer. CMS-2 analysis tools were run on the sample to gather Halstead and McCabe
metrics, SLOC counts, and other information. The subject translators were used to convert sample
CMS-2 code to Ada which were then compiled with the GNU New York University Ada Translator
(GNAT), VAX Ada, and Sun Ada compilers. Ada analysis tools were executed on the translated
code to gather SLOC, Halstead, McCabe, and other quality metrics.

The second phase was Stress Testing with large CMS-2 Samples. The purpose of this phase was
to collect translator behavior data while rigorously exercising all CMS-2 constructs. 84 files from
the CMS-2 UYK-7 test suite were selected for input to the three translators. Additional samples
were contributed by project offices from Space and Naval Warfare Systems Command (SPAWAR),
Naval Sea Systems Command (NAVSEA), and Naval Air Systems Command (NAVAIR). Stress
Testing was taken beyond translation to collect Ada SLOC and compile statistics. All Ada generated
by each translator was input to three commonly used Ada compilers (GNAT, VAX, Sun) to
determine the percentages that compiled correctly.

The third phase, Reengineer Until Ada Code Executes Correctly, covered the reengineering of
each translator's QA9 code, compiling, linking, and executing. The intent of this phase was to
continue until the results produced by Ada QA9 coincide with those produced by the CMS-2 QA9
baseline sample. An Ada harness/driver was produced by reengineering the translated CMS-2 test
harness. During this phase, we also decided to redesign and rewrite the QA9 functionality in Ada
95 directly to compare the product of a total reengineering effort versus translator based results. This
phase included the analysis of translated NAVSEA project code with comparisons to the same set of
code reengineered by hand. Table 2-1 lists the computers and software products used by each phase
of the evaluation process. Table 2-2 shows the products that reside on each computer.

2-1

Additional information on the analysis tools used during this evaluation and other potentially useful
analysis tools (but not used in these tests) is found in Appendix L.

CMS-2 TEST CASES

Unclassified test cases collected included CMS-2 source code from actual SPA WAR, NAVSEA,
and NAVAIR projects and the MTASS CMS-2 Compiler Validation Suite. These test cases are
shown in Table 2-3. Test cases were used primarily during stress testing. Projects contributing
these test cases and function of the contributed code are listed below. For more information see
Table B-3.

CMS-2 VERSUS ADA

Characteristics of the CMS-2 and Ada 95 languages are summarized in Table 2-4.

2-2

Table 2-1. Computers and Software Products Used by Phase of Evaluation -1

Quick Look
Inspection

Stress
Testing

Reeng. Until
Ada Executes

Correctly Function

COMPUTERS &OS

VAX 11/785/VMS 5.5-1 X X X -

SPARC 10/OS 4.1.3 X X X -

PC 486/MS-DOS 6.22 X -

SOFTWARE PRODUCTS

CMS-2 Test & Analysis Tools

MTASS (Machine Transferable
Support Software) Ver. 11 Rev. 4.0

X Stress test
translators

METRC (CMS-2 Source Code
Metrics Generator) Rev. 6.2

X X X Produce SLOC,
Halstead &
McCabe metrics

DESAN (CMS-2 Source Code
Design Analyzer) Rev. 6.1

X X X Examine suitability
for translation

Products Evaluated

APL Translator Rev. 2.8 X X X Translate CMS-2
to Ada

CCCC TransFormer Ver 6.1 Rev.
071196

X X X Translate CMS-2
to Ada

TRADA Translator PBL 1.0 X X X Translate CMS-2
to Ada

Synetics Assembler Design Extractor
(Assembler to CMS-2 Translator)

X Translate direct
code to CMS-2

Ada Compilers

GNAT 3.01 Ada Compiler (Ada 95)

Sun Ada Compiler 1.1 (Ada 83)

VAX Ada Version 2.2-38 (Ada 83)

X

X

X

X

X

X

X

X

X

-

2-3

Table 2-1. Computers and Software Products Used by Phase of Evaluation - 2

Quick Look
Inspection

Stress
Testing

Reeng. Until
Ada Executes

Correctly Function

Ada Analysis Tools

ADA SLOC Counter X X Count SLOC

Logiscope X X Produce Ada
quality metrics

Ada-ASSURED X X Examine
conformance to
guidelines

2-4

Table 2-2. Software Products vs. Computer

Software Products VAX 11/785

VAX VMS

SPARC 10

SunOS
4.1.3

PC 486

MS-DOS
6.22

CMS-2 Test & Analysis Tools

MTASS (Machine Transferable Support
Software) Ver. 11 Rev. 4.0

X

METRC (CMS-2 Source Code Metrics
Generator) Rev. 6.2

X X

DESAN (CMS-2 Source Code Design
Analyzer) Rev. 6.1

X X

Products Evaluated

APL Translator Rev. 2.8 X

CCCC TransFormer Ver. 6.1 Rev. 071196 X -

TRADA Translator PBL 1.0 X

Synetics Assembly Design Extractor
(Assembler to CMS-2 translator) Prototype

X

Ada Compilers

GNAT 3.01 Compiler (Ada 95)

Sun Ada Compiler 1.1 (Ada 83)

VAX Ada Version 2.2-38 (Ada 83) X

X

X

Ada Analysis Tools

ADA SLOC Counter X

Logiscope X

Ada-ASSURED X

2-5

0)
73
O
ü
0
O i_
3
O

CO
M

I
CO s
u
c
3

C
o o
o o
o"

CO

CM
©

CD

Ü
o
D.

S
te

ve
 M

cC
om

as

(2
15

)4
41

-1
77

1

C
ha

rle
y

B
oo

th

(6
07

)
75

1-
34

08

M
ar

v
B

om
be

rg

(6
12

)5
46

-7
40

2

B
ry

an
 R

ie
ge

l

(6
19

)5
53

-9
44

6

D
an

 J
ut

te
ls

ta
d

(4
01

)6
24

-9
61

5

B
ar

t B
ro

ck

(8
03

)
97

4-
45

95

O
10
c
o
Q.

CO <
2

a:

<
2

<
LU
CO
>
< z

<
LU
CO
>
<
2

<
LU
CO
>
<
2

tr

I
0.
CO

c
o
*3
U c
3
u.

D
is

pl
ay

s
ra

di
o

fr
eq

ue
nc

y
(R

F)
 d

at
a

P
ro

ce
ss

es
 a

co
us

tic
 d

at
a

JS
re

■D

O) c
j

s>
Q.
re
O A

ut
om

at
ed

 C
M

S
-2

co

m
pi

le
r t

es
ts

C
om

pu
te

s
ta

rg
et

 lo
ca

tio
n

in
fo

rm
at

io
n

E
2
o
h-
Q.

-Q
3
CO

O
i_
o
re
3

TJ
O
2

u
JE
re
D
CM

CO

ü

C
M

S
-2

Y
 (

w
ith

U

LT
R

A
-3

2)

C
M

S
-2

 (
C

on
ve

rte
d

fro
m

 C
M

S
-2

M
 to

C

M
S

-2
) _i

CM
i

CO

Ü C
M

S
-2

Y
 a

nd
 C

M
S

-
2L

_J
CM

i
CO

Ü

2
CM

CO

o

u
<0

Q.

S
3

A
irc

ra
ft

Ta
ct

ic
al
 M

is
si

on

P
ro

gr
am

H
60

B
 H

el
ic

op
te

r
(A

O
P

E

C
P

-2
67

 F
LI

R
/D

at
al

in
k

U
pg

ra
de

)

0_
o
o
_l
> a.
CO
CO

O
LU
< M

TA
S

S
 C

M
S

-2
 C

om
pi

le
r

V
al

id
at

io
n

S
ui

te

C
om

ba
t C

on
tro

l S
ys

te
m

M

K
-2

 F
ire

 C
on

tro
l S

ys
te

m

E
xt

re
m

el
y

Lo
w

C

om
m

un
ic

at
io

ns
 (

E
LF

)
Tr

an
sm

it
P

ro
ce

ss
or

C

om
pu

te
r

i

Table 2-4. Key Characteristics of CMS-2 vs. Ada 95

CMS-2 Ada 95

• Address based • Object-oriented
• Global variables (COMPOOLS) • Strong real-time support
• Overlay memory management • Support for distribution
• Source code INCLUDE capability • Interfaces to other languages (e.g.,
• Select source code switching on C, FORTRAN, COBOL)

compilation basis (CSWITCH) • Strong typing
• minimal support for reentrancy • Exception handling
• Supports limited user defined • Information hiding capabilities

types with type compatibility • Data abstraction
rules • Platform independent

• No exception handling, and no • Standard packages for 10,
data abstraction elementary mathematical

• Some information hiding; scoping functions, and string handling
rules restrict use of data within • Command line interface
scope • Supports recursion and reentrancy

• Supports functional programming • Supports software engineering
• Tied to UYK computers principles

• Supports programming in the
large

• Supports mission-critical and
safety-critical applications

2-7

3 . SUMMARY OF TRANSLATOR/TRANSLATION RESULTS

TRANSLATOR PROFILES

Table 3-1 shows a profile of the three translators. This profile includes the translator points-of-
contacts, major characteristics of the translators, and summary of the results of the evaluation. Table
3-2 summarizes translator results.

For details on these results presented and for additional results, we suggest that the reader turn to the
results appendices of this report.

CONCLUSIONS

The following are the significant conclusions from the translator evaluation.

1. The overall complexity and the distribution of the complexity across the translator-
produced Ada modules was similar to the corresponding CMS-2 code. This suggests that
each of the translators took a transliteration approach to translation. The McCabe and
Halstead metrics show that the complexity of the translator-produced code mirrors the
complexity of the CMS-2 code. The translators do not introduce or reduce complexity.

2. The overall complexity and the distribution of complexity across the translator-produced
Ada modules was very similar across translators. This suggests that each of the
translators took a similar approach to translation and to the distribution of control and
data. The McCabe and Halstead metrics show the similarity in complexity.

3. Most of the programs produced by the translators required manual reengineering to
compile and execute successfully.

4. The translators all produced programs that contained many features (e.g., GOTOs, "use
clause", subprogram exceeds 200 SLOC) that conflict with the Software Productivity
Consortium (SPC) programming style guidelines (Software Productivity Consortium,
1992). The vast majority of these features appear to reflect characteristics of the CMS-2
ancestor program. The non-compliant code is similar across translators.

5. There was little difference among the translators in the degree of difficulty to perform
conversions of CMS-2 to Ada (person-hours and SLOC changed). There were problems
with each because Ada 83 does not include standard mathematical functions. (This is not
a problem for Ada 95 since mathematical packages are now part of the standard.) There
were problems executing the Ada on Suns because the requested range of a floating point
type produced exceeded the platform limitations. Changes had to be made to the code
produced by each translators. These are described in Appendix A, C, and F.

6. The person-hours and Source Lines of Code (SLOC) changed or added shown in
Appendix C, may be useful in making "ball park" estimates of the effort required to
translate a CMS-2 application. However, the CMS-2 sample upon which these metrics
were based contained no direct code, overlays, or special device 10.

3-1

7. The object-oriented features of standard Ada (Ada 95) enhance the potential of a
redesign and rewrite of low quality CMS-2 applications in ways that dramatically reduce
control complexity and program size. This conclusion is based on an experiment to
redesign and manually rewrite QA9 in Ada 95. The quality of the redesigned and
rewritten application was far superior to the translated applications as indicated by
Halstead and McCabe metrics and the conformance to Software Productivity Consortium
style guidelines measured by Logiscope.

8. There were catastrophic failures by all translators during stress testing. The developers
were very responsive in fixing these translator deficiencies with an average turnaround of
two working days. By the end of testing, only two catastrophic failure conditions
remained in final translator revisions for this test set. These were QA7A for CCCC and
MK-2 for TRADA. Reference Tables B-l and B-3.

9. The quality of Ada souce code produced by the translators is of low quality and difficult
to modify and extend. Many Ada style guidelines were violated because the translated
code closely mirrors the CMS-2. Problems included the use of GOTO statements (all),
use of "use clause" (APL, CCCC), predefined information that is produced but not
needed (APL, CCCC), packaging that is difficult to understand since it was not done by a
human (all), excessive use of pointers (CCCC), and others that are described throughout
the report.

10. The person-hours per 100 CMS-2 statements (delimiting $s) required to translate and
successfully execute the QA9 sample in Ada when using the Sun Ada compiler were:
APL, 1.37 person-hours; CCCC, 1.91 person-hours; and TRADA, .62 person-hours.
Expect the translation of deployed CMS-2 systems to require a lot more time. The QA9
did not include 10 to special devices, direct code, or overlays. For details on how these
numbers were calculated see Appendix G: Table G-6, Table G-7, and the discussion of
these tables.

11. Translated code, intended to evolve and be maintained, would require significant
reengineering. The best translation had about a 2:1 SLOC expansion; the worst
translation had about an 8:1 SLOC expansion. A hand reengineering into Ada of the
original CMS-2 code had about a .5:1 SLOC expansion. The translated code had serious
deficiencies in the use of naming conventions, elimination of intermediate variables, use
of standard packages, memory management, performance, and position to reengineer.
The comparative analysis along with source code for each system is provided in
Appendix M.

3-2

V)
.2
o
0.
i_
O
«
0) c n

CO
©

n

<
Q

1-

•

Jo
e

W
ha

le
n/

R
ic

ha
rd

B

ri
m

so
n

C
SC

A

pp
lie

d
T

ec
hn

ol
og

y
D

iv
is

io
n

40
45

 H
an

co
ck

 S
tr

ee
t

(6
19

)2
25

-8
40

1

•
PB

L
l.O

•

V
A

X
 V

M
S

•
Y

es

•
N

on
e

re
qu

ir
ed

•
T

ra
ns

la
to

r n
ot

 c
ur

re
nt

ly

fu
nd

ed
 b

y
N

av
y/

m
us

t b
e

fu
nd

ed
 b

y
pr

oj
ec

t
•

L
is

te
d

in
 S

ec
tio

n
3.

8
of

T

R
A

D
A

 u
se

r
do

cu
m

en
ta

tio
n

(C
SC

,
19

94
)

•
Pr

od
uc

es
 m

ul
tip

le

sp
ec

if
ic

at
io

ns
 a

nd
 b

od
ie

s

•
E

ac
h

sp
ec

if
ic

at
io

n
an

d
bo

dy
 in

 s
ep

ar
at

e
fi

le
s

•
C

on
ta

ct
 V

en
do

r

Ü
Ü
Ü
Ü

•

N
oa

h
Pr

yw
es

C

C
C

C

23
00

 C
he

st
nu

t S
t.

Su
ite

 2
30

Ph

ila
de

lp
hi

a,
 P

A
 1

91
03

(2

15
)

85
4-

05
55

•
V

er
 6

.1
, R

ev
. 0

71
19

6
•

V
A

X
 V

M
S

•
Y

es

•
So

m
e

re
qu

ir
ed

•
T

ra
ns

la
to

r
no

t c
ur

re
nt

ly

fu
nd

ed
 b

y
N

av
y/

m
us

t b
e

fu
nd

ed
 b

y
pr

oj
ec

t
•

L
is

te
d

in
 S

ec
tio

n
7

of

C
C

C
C

 u
se

r
do

cu
m

en
ta

tio
n

(C
C

C
C

,
19

96
)

•
Pr

od
uc

es
 m

on
ol

ith
ic

pa

ck
ag

e
w

ith
 n

es
te

d
pa

ck
ag

es

•
A

ll
sp

ec
if

ic
at

io
n

an
d

bo
di

es
 in

 o
ne

 f
ile

•

C
on

ta
ct

 V
en

do
r

-1 a.
<

•

Ja
m

es
 G

. P
al

m
er

A

PL

R
oo

m
 6

-1
05

Jo

hn
s

H
op

ki
ns

 R
d.

L

au
re

l,
M

D
 2

07
23

(3

01
)

95
3

68
00

•
R

ev
. 2

.8

•
Su

n
O

S
•

Y
es

•
So

m
e

re
qu

ir
ed

•
T

ra
ns

la
to

r n
ot

 c
ur

re
nt

ly

fu
nd

ed
 b

y
N

av
y/

m
us

t b
e

fu
nd

ed
 b

y
pr

oj
ec

t
•

A
ll

•
Pr

od
uc

es
 o

ne

sp
ec

if
ic

at
io

n
an

d
on

e
bo

dy

•
Sp

ec
if

ic
at

io
n

in
 o

ne
 f

ile

an
d

bo
dy

 in
 s

ec
on

d
fi

le

•
Pr

od
uc

t o
r

Se
rv

ic
es

(Si >
cs
c
<L>

u
D.

Pi
t-i
o

TJ
C u
>

•

C
ha

ra
ct

er
is

ti
cs

•

C
ur

re
nt

 V
er

si
on

•

H
os

t C
om

pu
te

r/
O

S
•

U
se

r d
oc

um
en

ta
tio

n
fo

r
ru

nn
in

g
tr

an
sl

at
or

•

A
ss

is
ta

nc
e

ne
ed

ed
 in

ru

nn
in

g
tr

an
sl

at
or

•

Su
pp

or
t f

or
 tr

an
sl

at
or

de

ve
lo

pm
en

t/
tr

an
sl

at
io

n
as

si
st

an
ce

•

D
ev

el
op

er
 s

ay
s

C
M

S-
2

co
ns

tr
uc

t t
ra

ns
la

te
s

•
A

da
 P

ac
ka

gi
ng

•
Fi

le
s

Pr
od

uc
ed

•
A

va
ila

bi
lit

y/
C

os
t t

o
A

cq
ui

re

<
Q
<
tu

-D .E
cu c
N <u •-
'e £? ~ C CO c
o .* O
S3 es "

3 s 8 -

CM

■

(0
©

o
l_
0.
■_
o
«
m
c
n

CO

£
si
a
t-

Ü
Ü
Ü
O

eu
c
eu
Ü

eu eu
£ Gi- ft en

CO
C

_o
o
c
a
c
CO
CO
eu
ft ^

o c

en
CD
ft

i

U

c
_ o

-o o

eu
en
3

S *5 t>0

O —

AS
■ ft co .tr
3 •-
C u
C co
1- CO
CU CU
CO CO

D D

CU CU

c
o
cu

XI

>>
C3

2 E

CU CU

ft 3 .2

e E c £

E g
- E OT ü C § co
CD ^

CU
■♦-»
C

w cö ü r? U 4) -o

— <*- rz c K O
O O Q eu ftC/3

eu
E «

"»" £ •*-» TO

E i E 2
° c
03 T3
~ CU

u
CO

So.

CU
c
o
Ü

c
•o .2 cu re
c CO

cu t<—
•o

CU

Q.
<

co

.~ CO
> ^
O O
u. CO
a* n.

co

IS
«-» CU
C co ..

o = S ° >>.2

5 E a
T3 E T3
c o c
sun

D

2
E
w
Q
4 X

cu
CO CO
>> 3 co ca
* "3

§.<
rx-

o ■* £ co
■a eu
E u

O T3
o o
£ ft

•O O M »>
CU *.£ C
C CO •=
d 2 -E
tu IS ca

eu o
ft O

00 o
J3

p

CO

5 c
ft CO

a.

eu
CO
3

>>
C o
E
E o
u

C/3

c
o
u

E S %
ä *M -c Q — o

5o E M -
< c
ffi 3

co
C
o

CO g-

v' co
C/5 P 3

en
■o

CU
c

CU
T3

CU

CO o
CO fc
C V
5 <M

*-» o
CO CO <> CO
3 CU
C "P
r CO
o ÖÜ

U CU
1-

c
o

co C
u •->
P co

CO CO C
■*-* ■*-* fli eu co g

8 1 E
^ 2 o

co
V a.

co" ?>

^ 8 s
w o 2

8? ö 8
o « 8 g o
co co jr .2
c 8 § co

!•§§ > & o "O c 3 t- c o
C/3 Q, « O

O co

fc CO

c
o

c »

is o
co co
cu co
3 CU

.E =5
C CO
O ÖJ0

u £J

CO E u. •—
P CO

fc "
» S Ö
co CO C

ü co H

8 1 E
2 g o xi a u

u
B

E
o
ca
v

CM
O

CO
B

_o

B

u
eu
fc
O
o

B
V
E

£

3
o

D.

c
o

CO

73 « CO >-
O

" 1 3 g
r>i=

3
D.

■*-»

3
O

t3
C
CO

c

fc
CU

CM
O

2 's «« c

M
at

h
lib

C

on
tr

ol

CO
CO

u
e

CO c

1
CU

CU

E
CU o
ft

co
*c

eu
o
CO
l_
CO
X

U
t-i u
X

cu
3
co >
eu

E
2

Is
to
E
.o
t>
B
,3

CO

E

■JS c>
E R)
eu is

eu **■

*>
P

- c

m
y—s

fc4 OS ■* ■* ■** »r>
/-^ /—N •-N /—N

OS 'c' Tt- "* ■"Ü- -*
< 00 e-^

00 00 00 00
a OS ^F ^F CN ^

2
i- ON

in

CN C

2 £
-c o

CN CS

vo vP
0s- p^

CN «O

vo sP

VO 1-« 00 Os OS VO >*
VO m vo ro vo en CN CN CN VO

• • • • • • • • •

c /«—\ /—"\

£
■* ■*

00 00 o
ü

Os ^= © 2 M
</"> f—1 *-N O oo o

ü 00 4= sP NO

t-- oo © CN «—I r- cs CN OS
vo CO — OS m ^ *-4 -H OS

^
• • • • • • • • •

3
(0
0>
a:
c _c 00 o ^-N /—\

isl n
3

CO
>
HI
b.
o

a. U
"E
CN

00 oo

< CN OS •* •>*s s_^ o^
«r> VO

00
— VO

S? N? o^ ox «>- o
vo CO ~H >-J- ■* 1—4 »-H ""* "-1

• • • • • • • • •
m
c
S
H
■•- -4-^

O
Os
< CO

CO
<U

-4-j

CO
(0
E

a -2 CO

es s Ul •*-*
E -o -4-» CO

3 <
CO
u -4-*

3
Ok (0 IM

•4-»

c4 <2 CO
CO .s

■ !-
CO oo

Q) ^—u "* CO

00
t_i

A
<

— -4-*
CO c2 (0 "H. Ü e^-H

1- O E
o S 8 CO

CO

O "O
V
u

3
0)

o

es 3 o

(L>

CO

00

3
O
CO

3
•o
o
I-c
OH

CO
<L>

o>
E

jo
CO .—<
»-c en to "e

s
3
»H

»H

£
o

tr
an

sl
at

e
ta

te
m

en
ti 2 HJ o

c S
0)
a)
c

"5>

-D
es
U
o

3
(0

03 _

s <
<2

£

c8
Ü

CM

f
o

<4-H
c 01

Q_
00 00
.5 .S

O
U

O

a:
+
O
O
_J
J£
O
3

T3

.SP
"53

•

pr
od

uc
ed

 1
•

E

xe
cu

ta
bl

O) c
(0
0)

(0
(0

£ •
St

re
ss

 te
st

•

St
re

ss
 te

st

o
o

"3

•

00
es

■*-»

C
<L>
U !-
ej

OH

•

V
A

X
 A

da

G
N

A
T

Su

n
•

Pe

rc
en

ta
ge

fi

le
s

a (0

s
o
CS IB u
is oo

c cs
o
c c2

J3 •o <u
S o

3
u T3

«3 s
a.

3 e

3
O

<L>
U

CS

< J3

^ •a
a. 3
E O

T3 <u
s T3
cs o o
CO
O.
o

CS
■a
<
CM

<D

-s S
o

_c
03

O

u
cs is

JD X
O

<u
u c
CS CS
±J
CO
a. .OT

E tu
3 JS

•o 'S u <u
>1

o C8
u D.
CO C
CS

CO
C

IB

1* u

s CO CO

10
T)

a> 3
a cs cs

2
o
E

2
<u

•a
a
o

cu

cu

o

c2 2 3
CS

F!
E
I-I

E

u
C*-|

u
CS •a cy

X CN i—i

•a u 03 m e JS u
0) a -o
a,

en
CS

E
3
a

■a •S
< H H
a> to u (i>
<u CL> cu

c« U a C/D C/3

4 . LESSONS LEARNED AND OPINIONS

LESSONS LEARNED
1. Translation from CMS-2 to Ada requires a very strong expertise in CMS-2, the

application program being translated, and Ada. Do not attempt it without expertise
in all three areas. Training in the use of the translators and tools is desirable.

2. Translation from CMS-2 to the current standard, Ada 95, is easier and faster than to
Ada 83 because Ada 95 includes the standard mathematical functions. Ada 83 did not
include a floating point exponent which was required by the sample code taken to
execution in Ada (QA9). Ada 95 is also preferable because it supports modern
software engineering capabilities (e.g. object oriented programming improves
interface capabilities, and real time programming enhancements).

3. Translators were advertised (intended) to generate correct compilable Ada code.
Trial compiling of generated Ada during translator evaluation showed that this was
often not true. (Remember that non-translatables, such as direct code, are bracketed
inside Ada comments and will not "dirty" a compile.) During Stress Testing correct
compiles occurred no more than 44% of the time (See Table B-2).

4. Translation installation instructions were adequate to good. We needed no help from
the Computer Sciences Corporation to install and run the TRADA translator. Some
assistance was needed with the APL and CCCC translators. An NRaD software
engineer, who participated in the evaluation, was already very familar with TRADA.

5. Other tools not used in the translator evaluation may also be useful in the translation
process. Clue is a reverse engineering tool developed by Mitre that draws flow
diagrams from CMS-2 source code. The Design Analyzer calltree feature was not
used but may be useful. The Rational Reengineering Toolkit looks promising for
restructuring translated Ada source code.

6. After the environment was established for each translator, the translations were easier
than expected. The translator's environment includes logicals, command files, and
linking. We did not need any formal training.

7. Catastrophic failures were found in all translators during testing.

8. The Synetics Assembler Design Extractor (direct code to CMS-2 translator) only
executed correctly on its demonstration program. It was unsuccessfully executed on
samples chosen from the QA tests and project test cases.

9. Halstead and McCabe metrics did not enable us to qualitatively distinguish between
translator outputs. This is largely due to the fact that the translator vendors took a
"transliteration" approach to translation. As a consequence, source code content and
structure was very similar. Halstead and McCabe metrics did show that the
complexity of the Ada code produced by the translators mirrored the CMS-2 code.
McCabe was a very useful in comparing the complexity of translated Ada versus
redesigned/rewritten Ada.

10. Comparing SLOC between Ada and CMS-2 indicated that the translators did not
raise the level of abstraction during translation. That is, they tended to pick one or
more Ada features for each CMS-2 feature. Other than indicating that, SLOC was
not a particularly useful metric. It is possible for a module with a smaller SLOC

4-1

count to have more complex expressions than another and be more difficult to
understand. It is even possible for a module with a larger SLOC count to be more
efficient than one with fewer SLOC. A trivial example is one in which a loop is
unrolled and inlined. It is also possible for a module with more comments to have
fewer meaningful comments. For example, Ada-ASSURED inserts a line of dashes
between subprograms in a package as part of its formatting capability. This raises the
"comment count" substantially without adding any meaning whatsoever.

11. SLOC comparisons between Ada and CMS-2 had to be done with care. SLOC was
counted several ways: as straight editor lines of code in both CMS-2 and Ada, as
delimiting dollar signs ($) in CMS-2 and delimiting semicolons (;) in Ada. Three
different kinds of comments were counted in CMS-2 (including the one for compile
listing formatting) while in Ada there is only one kind of comment. We also had to
figure out how commercial analysis tools, like Logiscope, counted lines so that
comparisons of weighted metrics between CMS-2 and Ada source were valid.

12. A project should expect the translated Ada source lines of code to be greater than that
for the corresponding CMS-2 code. For example, Table B-4 (last page) shows that
for the 84 QA files used in stress testing, the increase in code size is more than 2:1
(Ada:CMS-2) for TRADA, slightly less than 2:1 for APL and almost 4:1 for CCCC.
These SLOC counts are lines as counted by an editor and include comments and
blank lines. The predefined functions and utilities produced by the translators are
included in these line counts. The ratios in SLOC count vary from project to project.
The translated Ada SLOC count will always exceed the CMS-2 SLOC count. One
might expect the source lines of code for Ada code reengineered by hand to be
approximately half of the CMS-2 code.

13. The evaluation process did not address the issue of target platform. For example, the
Quick Look sample tested mathematical operations for UYK computers and some of
the floating point type declarations reflected this. However, such a test makes less
sense if the target is a Sun Workstation. The translators should be "parameterized,"
for specific targets, or for portability.

14. We found that approximately 90% of the time when translated Ada code compiles
with one of the three compilers, it will compile with no changes or with minor
changes using the other two compilers (VAX, Sun and GNAT).

15. Metrics used to measure the effort required to take translated code through successful
compilation and execution were biased. Person-hour were biased by (1) the order in
which QA9 samples taken through compilation and execution and (2) the order in
which samples were compiled by the three Ada compilers. The difficulty of
conversion metric that counted SLOC modified or added until successful compilation
and execution were achieved was biased. Some code changes were much easier to
make than others (e.g., finding the cause for a single "program error" was more
difficult than making fixes to many lines of code where the translator produced a
floating point exponent which is not allowed in Ada 83.) How you count lines of
code modified when a segment of code is moved from one location in a program to
another can also bias this metric. Future related studies need to be aware of theses
biases so that metrics that measure level of effort can be improved.

4-2

16. Translated code, intended to evolve and be maintained, would require significant
reengineering. The best translation had about a 2:1 SLOC expansion; the worst
translation had about 8:1 SLOC expansion. A hand reengineering into Ada of the
original CMS-2 code had about a .5:1 SLOC expansion. The translated code had
serious deficiencies in the use of naming conventions, elimination of intermediate
variable, use of standard packages, memory management, performance, and position
to reengineer. See Appendix M for details.

OPINIONS
1. The CMS-2 to Ada translator developers were all very responsive in fixing translator

problems with an average repair turnaround of two working days. By the end of
testing, only two catastrophic failure conditions remained in final translator revision
for this test set. These were QA7A for CCCC and MK-2 for TRADA.

2. Translation is well-suited for stand-alone algorithms free of direct code.

3. The Quick Look and Reengineer Until Ada Code Executes Correctly translation
phases demonstrated that automatic translation of general purpose programming
constructs from CMS-2 to Ada is feasible. However, if there are plans to maintain
the translated code for some time and to extend it, be aware that quality
improvements are needed and that translator produced code is more difficult to
understand than code produced by humans. Of the three translators, we found the
CCCC produced Ada code to be the most difficult to understand because of the
extensive use of pointers. Quality improvements that are needed to make translated
code easier to understand include less use of access types (CCCC), elimination of
GOTOs (all), improved packaging (APL), elimination of "use clauses" not used
(APL, CCCC), elimination of variables that are defined but not used (all), and
moving declarations and type definitions down to the appropriate level for the
purpose of information hiding (all).

4. Correct translation of Ada can be validated more easily when it has not been
restructured. We can visually compare the Ada and CMS-2 source code. We believe
that many source code quality improvements are best handled following translation.
Tools that make these quality improvements have wide application and are certainly
useful for more than just translation efforts. Some potential post-translation quality
improvements that can be done by tools include the removal of GOTOs and other
restructuring, elimination of variables that are declared but not used, elimination of
dead code, and automated information hiding (moving declarations and type
definitions down to reduce visibility).

4-3

5. RECOMMENDATIONS

This section provides recommendations to CMS-2 project managers, to the Navy for
advancing translator technology, to translator vendors, and to tool vendors.

RECOMMENDATIONS TO CMS-2 PROJECT MANAGERS WHEN CONSIDERING
TRANSLATION

1. Do not translate unless expertise is available.

Expertise is needed in CMS-2, the application being translated (in the same
person), and in Ada. Assistance from translator experts is desirable.

2. If seriously considering translation, do it soon.

CMS-2 experts are reaching retirement age. CMS-2 analysis tools and some CMS-
2 translators are no longer supported. The availability of the translators in the
future is uncertain.

3. Expect translation to be difficult and time consuming.

The effort will probably include the manual translation of some CMS-2 code, the
manual translation of direct code, the preparation of new documentation, and
learning how to use the translators, and analysis tools. Much will need to be
redesigned and rewritten to newer software and hardware technologies. The
following examples will require significant program redesign:

a) Memory - CMS-2 uses memory overlays while modern systems use virtual
memory. Conversion of overlays to relocatable objects is error prone.
Attempts to use the desired stack memory model will introduce errors when
side effects of CMS-2 memory overlays were used (this was frequently done).

b) System Calls - CMS-2 used Executive Service Routines (ESRs) to interface
with the underlying Executive (Operating System). There is not always an
easy or correct mapping of ESRs to services in Portable Operating System
Interface (POSIX) compliant environments or in the Ada Run Time Executive.
Translators do not attempt to replace ESRs with logical modern system
services. Instead comments are inserted indicating that the user must do this.

c) Library Calls - CMS-2 used Common Service Routines (CSRs) for common
function such as mathematical functions. Translators do not attempt to replace
CSRs with logical modern library services. Instead comments are inserted
indicating that the user must do this.

d) I/O - CMS-2 used very low level primitives to effect I/O. Modern systems
have high-level commands and use change of representation clauses to
efficiently process data internal to the computer yet transmit/receive data in the
format agreed within the interface specification. Practically every I/O
mechanism will need to be redesigned in order to be integrated onto hardware
and software systems.

5-1

4. Analyze CMS-2 code for suitability for translation.

Use analysis tools such as the CMS-2 Source Code Design Analyzer (DESAN) and
CMS-2 Source Code and Metrics Generator (METRC). These tools and user
documentation are available as freeware from NRaD. These tools were developed
by the Computer Sciences Corporation with funding from the Ada Technology
Insertion Program, Advanced Combat Direction System and other projects.

DESAN was designed to assist in the reengineering of CMS-2 code prior to
translation to Ada. It identifies overlays, identifies data units that are defined but
not referenced, and identifies data units that are referenced but not set to a value.
The tool also examines the scope of variables and makes recommendations to
reduce it.

METRC produces source code statistics (e.g., SLOC for CMS-2 and direct code,
source statements in DDs and SYSPROCS), a keyword report, and Halstead and
McCabe complexity metrics.

a) Use these tools to acquire a profile of all code segments for which translation is
considered. This includes identifying the quantity of direct code, overlays, bit-
level manipulations, dead code, complex code, and 10 operations. Dead code
should removed. Complex code can be translated but is a strong candidate for
redesign. Other categories will have to be dealt with manually.

b) Visually examine the impact of executive and common service routines (e.g.,
peripheral devices, debugging aids, data extraction capabilities).
Calls to service routines will not translate with translators.

5. Determine how to handle replacement or translation of the executive operating system.

Use of ESRs should be evaluated to determine the most appropriate replacements
for operating system services or run-time system services.

6. Consider replacing CSRs with common Ada libraries (e.g., math packages).

7. Expect to possibly do some reengineering before translation and to do reengineering
afterwards.

Reengineering of CMS-2 can increase the percentage of translatable code.
Extraction or isolation of low-level segments and other non-translatables from
otherwise translatable segments will facilitate the translation process.

8. View IO as an area that needs complete redesign.

Translators will mark and bypass all low level 10.
All CMS-2 10 programming is low-level.

9. Make a cost estimate for translating your CMS-2 system.

10. Evaluate cost-schedule-quality tradeoff for translation versus redesign (See Figure 5-1).

This will involve answering questions such as, do I: use as-is, translate, redesign
the project for new technology and a new language, or start an entirely new project
at the requirements phase.

5-2

11. Do not translate a CMS-2 system that does not execute correctly in CMS-2.

Problems in the initial system will transfer and will be compounded by translation .

12. If major enhancements are scheduled to the existing software strongly consider redesign.

13. When a substantial amount of new code will be written it probably makes more sense to
redesign and rewrite rather than to continue with the legacy design.

14. Do not do translate unless there is strong time and money commitment from the sponsor.

15. Translate stand-alone algorithms.

Automatic translation is well suited for translating stand-alone algorithms that are
free of direct code (e.g., Kaiman filters)

16. Be careful about pilot testing on project code for examining translation feasibility

Results may underestimate the effort. For example, when translated Ada code is
compiled, counting the initial set of compilation errors is not an accurate indicator
of the magnitude of the effort required to achieve correct compilation. Many
compiler errors may be the result of a few problems or after fixing the first set,
new ones may appear. Also, obtaining correct compilation is much easier than
achieving correct execution in Ada.

RECOMMENDATIONS TO PROJECT MANAGERS AFTER DECIDING TO USE
TRANSLATOR TECHNOLOGY

1. Have your experts on board from the start of the translation process.

This minimally includes your CMS-2 application expert and Ada expert. Also,
include in your schedule, time for your software engineers to learn how to use the
translators and analysis tools.

2. Translate to Ada 95.

Use one of the three translators evaluated that translate CMS-2 to Ada. Compile
with an Ada 95 compiler because it includes the standard mathematical functions
and supports additional software engineering capabilities (e.g. object oriented
design).

3. Select a translator based on the translator profiles. See Section 3.

4. Consider CMS-2 reengineering to eliminate overlays, direct code, and to simplify procedures
that are overly complex. CMS-2 analysis tools listed in Table 2-1 will be helpful.

This will improve the quality of the translated Ada and the percentage of CMS-2
that is translatable.

5. Reengineer to eliminate bit manipulation

5-3

Bit manipulation in CMS-2 source code should be analyzed to determine why it is
being done. It may be unnecessary on the new target. For example, if the new
target platform were the Global Command and Control System (GCCS) the same
capability may already be handled by the core services. It may also be
unnecessary if it is being done to conserve memory, and the new target is a virtual
memory computer or has fewer memory constraints.

6. Use analysis tools:

a) CMS-2 analysis tools (e.g., CMS-2 Source Code Metrics Generator, CMS-2 Source
Code Design Analyzer)

b) Ada quality analysis tools (e.g., Ada-ASSURED, Logiscope, AdaMat, AdaQuest)

c) Ada reengineering tools (e.g., Reengineering Toolkit by Rational and Hyperbook by

The Reengineering toolkit and Hyperbook were not used in the translator
evaluation.

7. Decide in advance where to recertify.

If the CMS-2 software is reengineered then the CMS-2 software should be recertified
before translation. The Ada must be certified. Doing it this way will reveal any
problems more quickly.

RECOMMENDATIONS TO THE NAVY FOR ADVANCING TRANSLATOR TECHNOLOGY

I. Poll managers of deployed CMS-2 systems.

This will assist decision-making with regard to whether to continue funding CMS-
2 translator development and maintenance and whether to fund development of
CMS-2 "direct code" translation.

Ask managers of deployed CMS-2 systems the following questions:

a) How many lines of CMS-2 code and how many lines of direct code are there in
your system?

b) What are your intentions with your CMS-2 system over the next five years?

I. Use "as is"?,

II. Use automatic translation from CMS-2 to Ada 95, to C++ or to another
high-level programming language? If so, to which language?

III. Redesign and rewrite in a Ada 95, C++ or another high-level programming
language? If so, which language?

5-4

2. Support development of Ada quality improvement tools.

These tools are useful for improving the quality of translated Ada code as well as
the quality of legacy Ada code (e.g., removal of GOTO statements,, removal of
dead code, conversion of global objects to local objects, elimination of subprogram
side effects, creation of meaningful types, creation of meaningful names, and
repartitioning code into packages). The user community for these capabilities is
more than just CMS-2 to Ada projects. These quality improvements are needed by
projects that use Ada generated by translators whose input is a language other than
CMS-2 as well as projects that use poorly written Ada programs. Most of these
improvements are not provided by existing tools.

3. Support translator improvements that improve the quality of Ada produced.

These are improvements that do not hinder the use of existing CMS-2 test designs
and test data. The translation approaches used by the three translators was to not
make significant structural modifications to the Ada code produced. This allows
CMS-2 test designs and test data to be applied to the translator-produced Ada.
Hence it easier to demonstrate functional equivalence. Examples of these
improvements include, removing unnecessary context clauses, removing the "use
clause", producing code that is target-independent, and other improvements
described in recommendations to translator vendors.

4. Perform in-depth analysis of MTASS compilation errors.

During Stress Testing, translated MTASS QA tests were compiled and checked for
errors. Time permitted only a high-level examination of the compilation errors. A
more in-depth examination is needed to determine the spectrum of errors and the
effort required to obtain correct compilations. Information gathered from this
analysis will help translators generate higher quality Ada programs.

5. Develop translation cost schedule models.

These are needed to assist the project manager in estimating translation cost and
time. Based on parameters such as project size, complexity, and remaining life
cycle, a project manager can decide whether to translate or redesign in Ada.

6. Develop methodology to replace CMS-2 overlays and bit manipulations (automated or
manual).

Some CMS-2 constructs, such as overlays and bit manipulations, do not translate
or translate awkwardly. This methodology will substitute non-translatable CMS-2
with CMS-2 code that is translatable.

7. Consider the cost saving benefits of redeveloping or reengineering a collection of
applications as a whole.

5-5

When a collection of applications within a domain is to be transported, an
opportunity may exist to substantially reduce the transportation cost of the
collection as a whole compared to the cost of transporting each application
individually. Cost savings may be achieved by reengineering in accordance with
different software architecture principles such as client-server or object-oriented if
multiple applications can use the products of the effort. Cost savings can also be
achieved by developing or using domain-specific components which may be
shared by multiple applications.

Consider developing a decision-making strategy based on product quality and business
value for determining what CMS-2 applications to continue to use "as is" in CMS-2,
translate to Ada, discontinue using the product, or redesign/rewrite in Ada.1

Sneed (1995) suggests a metrics-based approach in which applications are ranked
according to their business value and technical quality. Technical quality is related
to such things as complexity, modularity, testability, understandability, and
availability of meaningful documentation. Business value is importance to the
Navy. Technical quality and business value are assigned numerical scores. Figure
5-1 is a visual framework for making reengineering decisions. The following is
one high-level decision strategy based on these rankings. The letters below are the
quadrant letters in the table.

a) Continue to use CMS-2 "as is" until obsolete (for example, a better product
takes its place or UYK computers are no longer used)

b) Redesign and rewrite in Ada

c) Discontinue using product

d) Translate to Ada and reengineer for maintainability

1 The 84 QA tests used for stress testing, Appendix B, lie in the low quality, high
value quadrant. We were able to significantly improve the quality of QA9 with a
redesign and rewrite in Ada 95. See Appendix C, Ada 95 QA9: Reengineering a
mixed-mode math test in Ada 95.

5-6

Technical
quality

High quality,

low value

a

Low quality,

high value

b

c
Low quality,

low value

d
High quality,

high value

Business value

Figure 5-1. High-level strategy: translate, reengineer, both, or discontinue

RECOMMENDATIONS TO TRANSLATOR VENDORS

ALL VENDORS

1. Minimize global interfaces/declarations.

The only declarations that should appear in the visible part of a package specification are
those objects and services that are required for use by clients of the package. In the case
of a monolithic package like the APL Qa9qlook package, the only entity required by an
external client is "procedure Driver." Qa9qlook is the Ada package produced by the APL
translator when translating QA9 during Quick Look (Appendix A). All of the other
declarations in the specification of package Qa9qlook are services of other clients in
package Qa9qlook. They should not appear in the specification of Qa9qlook.
Superfluous visibility is confusing.

2. Avoid use of nonstandard or proprietary math libraries.

5-7

The APL and CCCC translators produced source code that relies on nonstandard or
proprietary math libraries. The TRADA translator generated completely portable code,
but failed 82 tests due to Ada 83's lack of an exponentiation operator with a floating
point exponent. Ada 95 contains Ada.Numerics.Generic_Elementary_Functionspackage
(ISO, 1995) which contains the math functions required for the Quick Look tests. The
functions in this package should be used to the exclusion of all other math functions
when they meet accuracy and efficiency requirements. APL used the Sun math library,
CCCC used the VAX math library and TRADA did not use a math library.

3. Consider using unsigned integers with modular types.

Each of the translators defined a number of unsigned integer types or subtypes in their
predefined packages. The Ada 83 standard did not support unsigned integers, however,
Ada 95 does in the form of modular types (ISO, 1995). The translator developers should
consider replacing the existing definitions with definitions using modular types. The
following code fragment illustrates this capability.

package Unsigned_Integer is

type Ul is mod 2**1;

type U2 is mod 2**2;

type U32 is mod 2**32;

end Unsigned_Integer;

4. Produce portable Ada code.

The translators should be "parameterized" for specific targets (OS, computer, and
compiler) or for portability, and should not necessarily target the UYK architecture.
CCCC and TRADA produce UYK-oriented Ada code that will only run unmodified
using VAX Ada. For example, for QA9, TRADA produced a floating point number that
was too large for a Sun but not for a VAX.

5. Thoroughly test translators using the MTASS test suite

The translator evaluation team found many translator bugs when using MTASS during
stress testing. Vendors should translate the entire MTASS test suite and try compiling the
Ada produced using an Ada 95 compiler.

APL

1. Avoid monolithic packages.

5-8

Make better use of Ada's package concept. Among its benefits is its use as a
modularization mechanism. Single large packages are more difficult to comprehend and
maintain than several smaller compilation units 1.

2. Eliminate the "use clause".

Rather than the "use clause", a better solution is to make judicious use of package
renaming and the Ada 95 "use type clause".^ We recommend that APL and CCCC
include a switch to turn off "use clauses".

CCCC

1. Avoid access before elaboration.

Avoid calling subprograms before they are elaborated. The module structure generated
from the CCCC translator is one in which all of the code for a program which is not
included in "PREDEFIN.ADA" is declared somewhere in a single package. This
approach imposes limitations with respect to elaboration order and software
maintenance. One problem is that variables declared in package specifications cannot be
given default values returned fromfiinctions implemented in the body of that package.^
This is referred to as access-before-elaboration (ISO, 1995). Ada implementations are
required to be able to detect this condition and raise the program_error exception. This
problem occurred in two places in the CCCC QA9 program. One simple and
straightforward solution is to avoid nested packages, perform variable initializations in
the initialization section of the body, and to include "pragma Elaborate_Body;" (ISO,
1995) in the package specification.

It should be kept in mind that the APL and TRADA translators managed to generate a
correctly working version of QA9 without resorting to access types, addresses, or
unchecked programming. This demonstrates that these questionable techniques were
unnecessary.

Additional Thoughts on the Use of Pointers

The CCCC translator uses access types extensively to deal with the overlay problem. In
CMS-2, when memory became tight, objects would share memory name space with other
objects. This was a very dangerous practice, but necessitated by the severe limits on
memory during the 1970s and early 1980s. Programmers could change the value of any
of the named objects and the effect would be to change the value of all the named
objects. Today memory is very inexpensive and virtual memory models are used by
most hardware environment and supported through most computer languages.

See "Access before elaboration"
2 See Appendix D, section D.4.1.
3 Instantiations of uncheckedconversion do not generate executable code in many cases. In those that do, they
do not depend on code implemented in the body of the unit in which they are instantiated.

5-9

Ideally, the translation process should resolve names for each of the objects so that each
object has a unique name space. In most languages this is achieved using a virtual
memory model via the stack. Here the physical address of an object will vary based on
its environment at the time the object was placed on the stack. If its value is to be shared
with another object, it must be done explicitly via periodic assignment statements. The
use of stacks are considered very safe for safety-critical and mission-critical applications.

Most languages also provide a heap memory using pointers (i.e., access types). There
are certain operations such as list processing which are facilitated by pointers. The use
of heap memory requires additional memory management functions during real-time and
is very dangerous as memory can become easily fragmented requiring garbage
collection.

Instead of resolving the dangerous consequence of overlays, the CCCC translator
converts the object to a pointer (access type) so that the name space of objects are
overlaid in the translated environment. This necessitates the use of unchecked-
conversion as each access type is likely to have a different type with different legal
values.

The advantage of using pointers is that object name space resolution does not have to be
performed automatically. On occasion a CMS-2 programmer would take advantage of
the side-effects of overlays allowing the change of value of one object to also change the
value of other objects. This is bad practice, but frequently done. Hence, the use of
pointers will provide a correct solution in the face of poor programming practices.
Unfortunately, the translated code is not easily understood nor maintained as it continues
the legacy of bad programming practices.

Perhaps for those situations where suspected side effects are used, the translators should
generate normal Ada objects with a comment to the effect:

"In the CMS-2 program, Object_A and Object_B pointed to the same memory location;
please check for side effects."

2. Avoid monolithic packages.

Make better use of Ada's package concept. Among its benefits is its use as a
modularization mechanism. Single large packages are more difficult to comprehend and
maintain than several smaller compilation units. 1

3. Eliminate superfluous context clauses.

The presence of superfluous context clauses (e.g., with Package_Name) is confusing
because it implies that certain services are required by a client when, in fact, they are not.
This places the unnecessary burden on maintenance personnel of proving that such
services are irrelevant to their maintenance tasks.

4. Eliminate the "use clause".

Eliminate the "use clause". A better solution is to make judicious use of package
renaming and the Ada 95 "use type clause".!

1 See "Access before elaboration"

5-10

RECOMMENDATIONS TO REENGINEERING TOOL VENDORS

Develop tools that will automatically or semi-automatically improve the quality of legacy
Ada or Ada produced by translators. Some examples of these capabilities are listed below. We
are not aware of existing tools that perform these operations on the Ada code.

• Remove GOTO statements

All three translators created Ada source with GOTO statements whenever the
corresponding CMS-2 source contained GOTOs. A capability is needed to
automatically remove GOTOs by producing functionally equivalent Ada that is
maintainable. (METRC should be used to detect the presence of GOTOs in CMS-2,
which guarantees their presence in the Ada.)

• Remove dead code

Programs with dead code are confusing and difficult to. maintain. A capability is
needed that automatically removes or flags dead code. (DESAN can be used to flag
dead CMS-2 code for pre-translation reengineering).

• Convert global objects to local objects

As the CMS-2 COMPOOL construct is equivalent to the creation of global objects, all
translated code should be analyzed for placing objects at the appropriate location. A
portion of this should be done automatically. See next item.

• Eliminate subprogram call side effects to global objects

All subprograms should operate on local objects only. Most CMS-2 procedures and
functions operate on global objects making side effect detection a very difficult task.
Subprogram calls should pass all affected objects as parameters, eliminating the
possibility of dangerous side effects. This conversion could be done automatically.
(DESAN can be used to make scope change recommendations in the pre-translation
CMS-2.)

• Perform automated information hiding

A capability is needed to automatically push type definitions, variable declarations,
and subprogram declarations down to the appropriate level. Translators do not do a
very good job of producing Ada source that takes advantage of information hiding.
For example, variables and subprograms are sometimes declared in a package
specification when they are only used in the package body. A tool could
automatically improve the information hiding.

1 See Appendix D, section D.4.1.

5-11

However, there are some valuable Ada reengineering capabilities provided by tools that exist
today that were not used during this evaluation. For example, the Rational Reengineering Tool
Kit provides a capability for 1) creating meaningful types, 2) creating meaningful object names
and 3) for repartitioning code into packages. CCCC's Hyperbook processes Ada source code to
produce a collection of hyper-linked graphics and text that is viewable in a web browser. This
information helps the programmer to more quickly understand the Ada source code. Proposed
research using these tools is discussed in Appendix E.

SUGGESTED TRANSLATION STEPS

We assume that the goal in translation is to produce correctly executing Ada software that is
maintainable. The steps of obtaining, installing, and learning to use the tools mentioned are not
listed. A description of the Ada analysis tools is found in Appendix E. Some were used in this
experiment.

Inspect and Prepare CMS-2 Source Code

1. Determine Feasibility of Translation by following the sub-steps below.

a) Count lines of CMS-2 and direct code using the CMS-2 Source Code Metrics Generator
(METRC). Visually examine code to see if direct code has equivalent CMS-2
functionality in comments.

b) Gather complexity metrics. METRC produces McCabe Cyclomatic and Halstead
Complexity metrics. Analysis can be on SYSPROC, SYSDD, or entire system.

c) Gather processing flow analysis data. The CMS-2 Source Code Design Analyzer
(DESAN) produces both long and short call trees. Analysis can be on SYSPROC,
SYSDD, or entire system.

d) Identify use of dead code, and scoping using DESAN.

e) Identify use of overlays using METRC.

f) Examine use of executive and common service routines and other non-translatable
aspects. This step is done by visual examination, probably by using a text editor.

g) If possible, run Logiscope CMS-2 to further examine the quality of the CMS-2 code.
NRaD did not use the Logiscope CMS-2 capability. (The CMS-2 analysis capability is
an add-on to Logiscope that may be purchased. It produces Halstead, McCabe and
other metrics.)

h) Consider using Clue to help understand CMS-2 code. This prototype CMS-2 reverse
engineering tool produces data flow diagrams, control flow diagrams and reports that
assist the programmer in understanding CMS-2 source code.

2. Identify CMS-2 Code Segments Suitable for Translation. Select segments based on:

5-12

a) Minimal quantity of direct code (where equivalent CMS-2 does not exist in comments)

b) Minimal use of overlays, executive service calls, 10 to special devices, and other non-
translatable aspects

c) Low McCabe complexity scores (less than 20)

d) Visually examine code that has scores of greater than 20 to verify that it really is not
too complex to be maintainable. If translated, the complexity will be equivalent in
Ada. For a description of the McCabe Cyclomatic Complexity metric see Appendix D.

e) Stand-alone algorithms
f) Distinguish easy from difficult-to-translate pieces.

g) Consider the costs and benefits of separating direct code and executive calls from
otherwise translatable code.

Reengineer CMS-2 Source Code
a) Where cost-effective, reengineer CMS-2 to separate direct code and executive calls

from otherwise translatable code.
b) Convert direct code to CMS-2 high level in preparation for translation. Manually do

this for direct code where equivalent CMS-2 is contained in comments. (All direct
code and assembler code that is not converted to high level in preparation for
translation will require reengineering of the translated Ada source). A currently
unfunded prototype tool, the Synetics Assembler Design Extractor, was developed with
the goal of translating 80% of direct code to CMS-2. The tool was proven to be
immature and not production ready.

c) Reduce the scope of variables based on information provided by DESAN.
d) Remove dead code identified by DESAN.
e) Decide whether to test/ recertify the reengineered CMS-2 system, or to wait until after

translation to certify the Ada system.

Translate and Compile

1. Select a translator (APL, CCCC, TRAD A) based on the profiles provided in Section 3 and
translate candidate segments. Data provided in results appendices of this report may help
with translator selection.

2. Compile translated code using an Ada 95 compiler (e.g., GNAT).

3. Make changes required to achieve compilation.

4. See Results of Quick Look Inspection, Appendix A, for typical compilation errors
expected for each translator.

Reengineer and Improve the Quality of Ada Source Code

1. Reengineer the Translated Ada

5-13

Make changes to Ada source code required to achieve correct execution. For a
deployed system, recertification is required. See Appendix F, for typical
compilation and execution errors to expect with each translator. Improvements in
the use of naming conventions, elimination of intermediate variables, use of
standard packages, memory management, and performance should be made. See
Appendix M for a discussion as applied to the MK2 CMS-2 code sample for
translated Ada source and reengineered Ada source.

2. Improve the Quality of Correctly Executing Ada Code

a) Examine quality of Ada code by using tools like Ada-ASSURED, Logiscope, Adamat,
and AdaQuest.

b) Bring Ada source code into compliance with established programming style guidelines
by using a source code formatter and standards enforcer such as Ada-ASSURED.

c) Manually make other changes so that code conforms to guidelines (e.g., remove
GOTOs).

3. Consider use of Reengineering Toolkit (RTK) to Restructure Ada Code.

The RTK is used to increase the quality of Ada code through restructuring. It is
available from Rational. It was not used by NRaD. See Table L-2 for a description.

4. Try using Hyperbook to automatically produce documentation from Ada source code.

Hyperbook was not used by NRaD. See Table L-2 for a description.

5-14

6. REFERENCES

Banker, R.D., S.M. Datar, C.F. Kemerer, and D. Zweig, November 1993. "Software
Complexity and Maintenance Costs", Communications of the ACM, vol. 36, no.l 1.

Cohen N.H., 1996. Ada as a Second Language, McGraw-Hill, New York, New York.

Computer Command and Control Company 1996. "CMS-2 to Ada Transformer User
Guide", Version 6.1, Philadelphia, Pennsylvania.

Computer Sciences Corporation 1994. "Software User's Manual For The CMS-2 to Ada
Translator", San Diego, California.

Fleet Combat Direction Systems Support Activity (FCDSSA) 1993. "Revision Test Plan and
Procedures (RTPP) for MTASS", (U) MT2Y-TPL-SQA-T5524, R06C0.

GrammaTech Incorporated 1995. "Ada-ASSURED 3.0 User Guide & Reference Manual",
Ithaca, New York.

Halstead M.H. and V. Schneider, August 1980. "Self-Assessment Procedure VII",
Communications of the ACM, vol. 23, no. 8.

Halstead M.H., 1977. Elements of Software Science, Elsevier, New York, New York.

ISO/IEC 8652:1995, "Ada 95 Reference Manual".

Jones C, 1991. Applied Software Measurement Assuring Productivity and Quality, McGraw-
Hill, New York, New York.

Jorgenson P.C., 1995. Software Testing A Craftsman's Approach, CRC Press, New York,
New York.

Naval Sea Systems Command. 13 Dec 91. "User Handbook (UH) for CMS-2 Compiler",
NAVSEA 0967-LP-598-8020, Revision 4. Washington, D.C.

NCCOSC RDT&E Division. 14 Aug 96, "CMS-2 to Ada Translation Evaluation Plan", San
Diego, California.

Software Productivity Consortium December 1992. "Ada Quality and Style: Guidelines for
Professional Programmers", SPC-91061-CMC, Version 02.01.01, Herndon, Virginia.

Sneed H.M., 1995. "Planning the Reengineering of Legacy Systems", IEEE Software, vol.
12, no. 1.

United States Department of Defense, 1983. "Reference Manual for the Ada Programming
Language".

6-1

7. ANNOTATED BIBLIOGRAPHY

TRANSLATING INTO ADA

Computer Command and Control Company. 1996. "CMS-2 to Ada Transformer User
Guide", Version 6.1, Philadelphia, PA.

This document describes the use of the CMS-2 to Ada Transformer to create Ada code
from corresponding CMS-2 code. It includes installation instructions, a description of the
transformer, a description of the transformation process, an example, and a list of known
problems.

Computer Sciences Corporation. 1994. "Software User's Manual (SUM) for the CMS-2
to Ada Translator," VAX Version, San Diego, CA.

This document includes detailed execution procedures for executing the VAX-based
TRADA translator, a list of translator generated error messages, the output summary file
produced by TRADA, translation strategies, and a sample translation.

Computer Sciences Corporation. 1996. "CMS-2 to Ada Translation Study Final Report",
San Diego, CA.

This report describes the results of a study to translate approximately 14,000 source lines
of code of CMS-2 and direct code from the Advanced Combat Direction System (ACDS)
Block 0 program to Ada using the TRADA translator. The purpose of the study was to
determine the effort required to perform the translation, to develop a methodology for
conducting translations, and to obtain empirical data that would provide a basis for
estimating the translation of other similar code.

Sampson, C. "Translating CMS-2 to Ada." Computer Sciences Corporation, San Diego,
CA.

This paper is a description of TRADA translator. It emphasizes the translation used and
the reasons for using them. It describes the CMS-2 dialects and discusses some of the major
translation problems.

OTHER REENGINEERING PAPERS

Adolph, W.S. 1996, "Cash Cow in the Tar Pit: Reengineering a Legacy System," IEEE
Software, vol. 13, no. 3, pp. 41-47.

This paper imparts lessons learned on a legacy-replacement project a not straight forward
activity. It contains information valuable to the software manager who is considering the re-
engineering of a legacy system.

7-1

Aiken P., A. Muntz, and R. Richards 1993. "A Framework for Reverse Engineering DoD
Legacy Information Systems," Proceedings: Working Conference on Reverse
Engineering May 21 -23, 1993, pp. 180-191.

This paper reports on a framework to reverse engineer selected DoD legacy information
systems. The approach was developed to recover business rules, domain information,
functional requirements, and data architectures, largely in the form of normalized, logical
data models. In a pilot study, the authors reverse engineer the data from diverse systems -
ranging from home grown languages and database management systems developed during
the late 1960's to those using high order languages and commercial network database
management systems.

Arango G., I. Baxter, P. Freeman and C. Pidgeon 1986. "TMM: Software Maintenance
by Transformation," IEEE Software, vol. 3, no. 3, pp. 27-39.

This paper describes a method called transformation, used to recover abstractions and
design decisions made during implementations.

V.R. Basilli 1990. "Viewing Maintenance as Reuse-Oriented Software Development, "
IEEE Software, vol. 7, no. l,pp. 19-25.

This paper describes a high-level organizational paradigm for development and
maintenance, with it, an organization can learn from development and maintenance tasks and
then apply that paradigm to several maintenance process models. Associated with the
paradigm is a mechanism for setting measurable goals that let you can evaluate the process
and product, and learn from experience.

Beck J. 1993. "Program and Interface Slicing for Reverse Engineering," Proceedings:
International Conference on Software Engineering 1993, pp. 509-518.

This paper shows how program slicing techniques can be employed to assist in the
comprehension of large software systems. It shows traditional slicing techniques at the
statement level, and a new technique, interface slicing, at the module level.

Bennett K. 1995, "Legacy Systems: Coping with Success," IEEE Software, vol. 12 no 1
pp. 19-22.

This paper discusses technical and nontechnical challenges with migrating and updating
legacy software. Challenges range from justifying the expense, to dealing with offshore
contractors, to using program-understanding and visualization techniques. The paper
provides a summaries of five articles on legacy systems.

7-2

Biggerstaff T. 1989 "Design Recovery for Maintenance and Reuse," IEEE Computer,
vol. 6, no. 4, pp. 36-49.

This paper describes the steps of the design recovery process, the properties of design
recovery, a model-based design recovery system, and the MCC prototype design recovery
system called Desire Version 1.0. The system is intended to explore only that aspect of
design recovery that does not depend on the domain model. The paper also discusses
commercial reverse engineering tools and related research.

Bray, O. and M.M. Hess 1995. "Reengineering a Configuration Management System,''
IEEE Software, vol. 12, no. 1, pp. 55-63.

This paper describes how developers at Sandia National Laboratories successfully
reengineered a 30 year-old system whose source code and documentation was incomplete,
into a client-server application.

Britcher R.N. and J.J. Craig 1986. "Using Modern Design Practices to Upgrade Aging
Software Systems," IEEE Software, vol. 3, no. 3, pp. 16-24.

This paper describes how IBM Federal Systems Division successfully applied its software
engineering principles to modify 100,000 lines of 20 year old Federal Aviation
Administration air traffic control system code.

Bryne, E.J. 1992. "A Conceptual Foundation for Software Re-engineering," Proceedings:
Conference on Software Maintenance 1992, pp. 226-235.

This paper presents a conceptual foundation for software re-engineering. The foundation
is composed of properties and principles that underlie re-engineering methods, and
assumptions about reengineering. A general model of software re-engineering is established
that is useful for examining re-engineering issues such as the re-engineering process and re-
engineering strategies.

Bryne, E.J. and D.A. Gustafson 1992. "A Software Re-engineering Process Model,"
Proceedings: International Computer Software & Applications Conference 1992,
pp. 25-30.

This paper describes a process model of software re-engineering. This model focuses on
the breadth of the process by identifying necessary process phases and possible tasks.
Variations within the process are discussed

Choi S.C. and W. Scacchi 1990. "Extracting and Restructuring the Design of Large
Systems," IEEE Software, vol. 7, no. 1, pp. 66-71.

This paper describes an approach to reverse engineering that first maps the resource
exchange among modules and then derives a hierarchical design description using a system-

7-3

restructuring algorithm. The focus is on extracting the structural and, to a lesser degree,
functional and dynamic properties of large systems — systems composed of modules and
subsystems. This process is equivalent to reverse-engineering a system-level design
description.

DeBaud J. and S. Rugaber. "A Software Re-Engineering Method using Domain Models,"
Proceedings of the International Conference on Software Maintenance 1995, pp.
204-213, College of Computing, Georgia Institute of Technology.

This paper introduces a method that addresses problems associated with reengineering
technology based on program analysis methods such as parsing and data flow analysis. An
executable domain model is constructed for understanding the context of a program and an
object-oriented framework is used to record that understanding.

Hartmann J. and D.J. Robson 1990. "Techniques for Selective Revalidation," IEEE
Software, vol. 7, no. 1, pp. 31-36.

This paper describes a method to revalidate modified software while minimizing the time
and cost involved in maintenance testing by using a systematic automated approach.

Hausier P.A., M.G. Pleszkoch, R.C. Linger and A.R. Hevner 1990. "Using Function
Abstraction to Understand Program Behavior," IEEE Software, vol. 7, no 1 pp
55-63.

This paper describes how you can understand programs by abstracting program functions.
This requires you to determine the precise function of a program or program part, which
explains exactly what it does to data in all possible circumstances.

Johns Hopkins University, Applied Physics Laboratory. 1995. "CMS-2 to Ada
Translation Tools", Laurel, Maryland.

This report describes the development of a set of tools designed to convert a program
written in CMS-2 into a program written in Ada having the identical functional performance
as the original. The core of the tool set is a group of programs that operate on CMS-2 source
code and in a series of passes translate to statements or statement blocks, as well as their
associated data elements, into a functionally equivalent set of Ada statements and data. In
so doing, the syntactic differences in the two languages are resolved, yielding a code
structure which is compilable with relatively minor adjustments. The report includes
instructions for running the APL translator.

Letovsky S. and E. Soloway 1986, "Delocalized Plans and Program Comprehension,"
IEEE Software, vol. 3, no. 3, pp. 41-49.

7-4

The paper presents examples from protocol studies of expert programmers, illustrating
certain common kinds of comprehension errors that can occur in the reading of code during
maintenance. These errors involve programming plans which are delocalized - that is,
spread far and wide in the text of the program. Strategies are described for preventing
comprehension failures due to delocalization.

Manzella, J. and B. Mutafelija 1992 "Concept of the Re-engineering Life-Cycle,"
Proceedings: Second International Conference on Systems Integration, June 15-
18,1992, pp. 566-571.

This paper presents the status of work being done at Grumman on integrating several
development concepts into a single life-cycle. This paper defines an extended software
development life-cycle that addresses both forward and reverse software development. This
is the first and most crucial step in defining a disciplined and repeatable software
development process.

MIL-HDBK-SRAH (VERSION 2.0). 1995. "Software Reengineering Assessment
Handbook".

This handbook provides guidance for conducting technical and economic assessment of
software reengineering strategies to determine whether to reengineering legacy software,
retire it, redevelop it, or to continue to maintain it as is. The handbook documents a software
reengineering cost/benefit methodology that includes a technical process, economic process,
and management decision process.

Merlo E., P.Y. Gagne, J.F. Girard, K. Kontogiannis, L. Hendren, P. Panangaden and R.
De Mori 1995. "Reengineering User Interface," IEEE Software, vol. 12, no. 1,
pp. 64-73.

This paper describes how a partially automation of the process of turning a character
based user interface into a graphical interface.

Raglund B. and M. Olsem "Maintain Legacy Software or Reengineer?' CrossTalk, vol.
9, no. 4, pp. 6-10.

This article provides a road map that identifies what an organization needs to reengineer
a legacy software system. The road map is a 9-step reengineering process. Definitions for
reengineering terms is provided.

Rich C. and L.M. Wills 1990. "Recognizing a Program's Design: A Graph-Parsing
Approach," IEEE Software, vol 7, no 1, pp. 82-89.

This paper describes how a prototype system automatically finds all occurrences of a
given set of programming structures (cliche) and builds a hierarchical description of the
program in terms of the cliche it finds.

7-5

Rugaber S., S.B. Ornburn, and R.J. LeBlanc, Jr. 1990. "Recognizing Design Decisions
in Programs," IEEE Software, vol. 7, no 1, pp. 46-54.

This paper describes how to derive a characterization of design decisions based on the
analysis of programming constructs. The characterization underlies a framework for
documenting and manipulating design information to facilitate maintenance and reuse
activities.

Scandura J. M. 1994. "Converting Legacy Code into Ada: A Cognitive Approach,"
Computer, vol. 11, no. 2, pp. 55-61.

This article reviews current software reengineering tools. It describes a new cognitive
approach to system reengineering based on code comprehension tools that
provides visual representation of code containing less "cognitive noise." This
approach lets programmers better understand the system design. The approach
integrates code comprehension tools with current reengineering methodologies to
create an integrated reengineering workbench for converting legacy code into
newer languages such as Ada or C/C++.

Sneed H. M. 1994. "Planning the Reengineering of Legacy Systems," IEEE Soßware,
vol. 11, no. 1, pp. 24-34.

This paper describes a five-step reengineering planning process, starting with an analysis
of the legacy system and ending with contract negotiation. The steps are project
justification, portfolio analysis, cost estimation, cost-benefit analysis, and contracting.

Software Productivity Consortium. 1989. "Ada Quality and Style Guidelines for
Professional Programmers", Van Nostrand Reinhold, New York.

This book helps the computer professional produce higher quality Ada programs.
Guidelines consist of a concise statement of the principles to be followed and rationale for
why the guideline is important. These guidelines are probably the most widely accepted and
used Ada guidelines.

Software Productivity Consortium 1995. "Ada 95 Quality and Style Guidelines for
Professional Programmers", Version 01.00.10, SPC-94093-CMC.

A book of specific guidelines helping the computer professionals produce higher quality
Ada 95 programs.

Wong K., S.R. Tilley, H.A. Muller and M.D. Storey 1995. "Structural Redocumentation:
A Case Study," IEEE Software, vol. 12, no. 1, pp. 46-54.

7-6

This paper describes a method of reverse engineering through redocumentation that
promises to extend the useful life of large systems.

7-7

APPENDIX A : RESULTS OF QUICK LOOK INSPECTION

The purpose of the Quick Look Inspection was to ensure that software products and
resources were ready for subsequent phases. During this phase, a CMS-2 sample program of
approximately 5000 lines of code was translated by the three translators. Manual modifications
were made to the translated code until compilation was achieved. This phase ensures that
required computers are accessible, and required software products including translators are
installed and execute correctly.

QA9 SELECTED AS SAMPLE

We chose the CMS-2 QA9 program as our sample program. This program is a large self-
checking test program designed to verify the MTASS CMS-2 compiler's ability to generate
arithmetic code that provides acceptable results when running in an AN/UYK-43 MIL-STD
computer. QA9 heavily uses arithmetic capabilities that are critical to every programming
language and are generally fairly comparable between languages. QA9 has 5 sections:

• exponentiation
• multiplication
• division
• addition
• subtraction

Since CMS-2 supports legal arithmetic with mixed types, many mixes are checked by the test
(for example, fixed-point * floating-point / integer). If the result is within an acceptable range
for the computer, a UYK-43 in this case, the test passes.

We selected QA9 because :

• Ada code after translation could be easily mapped back to the original CMS-2.
• The mathematical functionality is common and critical to each language.
• No translation of direct code (embedded assembly) was involved.
• It contained approximately 5000 lines of code.
• We believed we could achieve successful execution after translation.
• A team member was very familiar with QA9.

A-l

OVERVIEW OF STEPS

The Quick Look Inspection phase includes the following steps:

1. Compile, link and execute CMS-2 sample

CMS-2 QA9 with test harness was compiled, linked and executed on a VAX
11/785 computer using MTASS. This step ensured that the CMS-2 code compiled
correctly and the chosen sample would execute. Most important, this step
established a baseline to verify valid execution of the translated Ada sample.

2. CMS-2 metrics gathering and analysis

Two CMS-2 analysis tools were executed: CMS-2 Source Code Metrics Generator
(METRC) and CMS-2 Source Code Design Analyzer (DESAN). METRC
produced SLOC counts, McCabe cyclomatic complexity and Halstead complexity
metrics. DESAN produced metrics related to the suitability for translation.

3. Translation to Ada using three translators

The CMS-2 QA9 sample was input to the three translators to produce translation
listings which included the Ada source and the CMS-2 non-translatables. The
TRADA and CCCC translators executed on a VAX 11/785, while the APL
translator ran on a Sun Sparestation.

4. Compilation of translated Ada

The Ada source produced by the TRADA and CCCC translators was compiled
using the VAX Ada compiler and GNAT (Sun) compilers. The Ada source code
produced by the APL translator was compiled using Sun Ada and GNAT (Sun)
compilers. Compilation errors were recorded and the Ada source was
reengineered to achieve successful compilation.

5. Examination of compiled Ada source

Analysis tools were used to examine the compiled Ada source code. These tools
included a SLOC counter, Logiscope, and Ada-ASSURED. Ada-ASSURED was
used to examine conformance to Software Productivity Consortium Ada quality
and style guidelines. Logiscope produced McCabe and Halstead complexity
metrics.

The remainder of this appendix reports these results.

COMPILATION RESULTS

Compilation was attempted on the translator generated Ada QA9 programs. During this
phase, the translator developers were given the opportunity to fix translator problems. The APL
translator produced one package specification and body. The CCCC translator produced a

A-2

monolithic package containing nested packages. TRADA produced multiple package
specifications and bodies (Table 3-1 provides translator profiles). All required some
modification to compile. Table A-l to Table A-4 lists the compilation errors for the Ada code
generated by the three translators. Only the GNAT compilation errors are presented, the results
for the other compilers are very similar. These tables show the compilation errors produced
when the original versions of the translators were used before any translator fixes were made.
Included in these figures are the program unit, the problem code, explanation of the problem, the
manual changes needed to achieve compilation, and any remedies provided by the translator
developers to eliminate compilation errors. The right hand column shows how problems were
fixed by the developers. If the column contains a "no", the problem was not fixed at the time of
this writing.

APL

Table A-l and Table A-2 list the compilation errors for the APL-generated Ada QA9 package
specification and package body respectively. Later versions of the translator fixed all of the
errors in the package specification and all except two in the package body. The syntax errors
associated with the package specification included undeclared variables, undefined types, use of
Ada reserved words, constraining strings in the parameter list and others. The errors associated
with the package body included undefined variables, use of Ada reserved words, and others.

cccc
The Ada QA9 produced by the CCCC translator required manual modifications of the Ada

code to compile. The code initially cleanly compiled with the VAX Ada compiler but porting it
to the Sun workstations using the Sun Ada and the GNAT compiler produced errors. Table A-3
lists the compilation errors produced in the CCCC QA9 Ada body. The table also shows the
manual fix made and whether a later version of the translator corrects the problem. No
modifications to the specification were required.

TRADA

The Ada QA9 produced by the TRADA translator required manual modifications to compile.
The code initially cleanly compiled with the VAX Ada compiler. Later compilation on the Sun
workstations using Sun Ada and the GNAT Ada compiler produced some errors. Table A-4 lists
the compilation errors produced in the Ada TRADA QA9 specification. No modifications to the
body were required.

A-3

>. D LU
•Q « CO z
(0 £ W X o
c £ 2 X 2
o S- CM CM CO CO CO *-*■

co c?
<D ■«-
Ü 1

CO ^-.
CO o
<D ,r"
U ' 2ö5

CO
CO

CO
CO

Q < Q
1 . ^

© > CT Q: .2 Ü S CO ° 00 _i' ü > o> UJ LU ro Jii- ro ü> _i *~**

1
k.
o
o.
E
o
Ü
1-
<
z
O

>- D
© t_
ro o

C CO

"O re

u.

CD
UJ
1- z

TJ

O
LU
1-
Z

CO
TJ

CD -,'

CD

51

co

h- >-

!5

.J2 :

o: 9-
h- >■

co -i

<
CO

CD
Q.

CO
>

Z
tr
t-
CO
c

TJ
CO

z
a:
i-
co
c

CM
TJ
CD

CD
>

5
CO
>

CD (\

2 18 Q.
CD

SZ
CD

SZ

0)
<*-'*

O)
Ü
ro LLT c o _c z

«9

U)
c
0) CD <D

TJ
CO
CO

E
"E
o

"E
o
o

o
z

_l
k.
o k.

SZ

1Z TO

sz

C (V
~ en

co
D

o
8.

.52

s
CO 3 z

k.
LU
C
o

Q.
E

11 So
re
3
C
re
5

O CD
«o .*:
CD £ rag.
11
0) a>

O CO
CO ^

!&
IJ
tu CD

CO . .

in -

LU a:

Ü
LU

N1 'S
00 o

Ü
LU
rr

CM S
CO o
> o

.52
CD
a.

CO
>

Z
tr
i-
co
c

TJ
CD

tr
i-
co
_c

CM
TJ
CD o ö o' ö o' 0. . S 3 TJ S 3 TJ CD CD CD

ü
c
o

TJ ro
X)

0) CO
T> ro tg ^ CD •C" CD

a. SZ SZ

CO TJ TJ o a) CD CD CD
««- O) D) C C
(J CD CO «= l^

o
Q.
0)

.*: .^ CD CD

E u ü TJ TJ CO CO
— ffl <0 ■•-• 0) ro C C *- c ♦- c:

CJ o JC Q- O j? O- 3 3 CO CO TJ o c O "C
e A c ~ co C * CO W CO 5 o c "co c t5
CO

o
k.

o c c
co ^r

o c c
co — ^r a> Ü

Ü
d) TJ .E o 1? «- .= o

u
CO

QL

Q. CD m TJ
O) S-
a> ro o
c t) CO
•- CD TO

0 OT3,

Q) CO Ü
c Ü CO
•- CD CO

Q.

^2

2
N1

00

1®
CM *♦- If = CD

< £

ro -^
i: TJ
CO CD

§1
■i= TJ
CO CD

§1
< TJ JQ TJ SZt 3 S. ro CD

0.
< CD

■v
o
Ü

O
CO

CD

O
(0

.2 o
.52 o
i_ CD

.52 >c , ,
^ CO O) 0 i- (1) *3 C 0) o o

(V a) *-* i— °8 1 Q. ^ CO CD
< E c

4-*
c

QL Q- 1
1 N

N
N CM ^;LU c .£= •

« n *""■ N CO CM CO rJ"Z. *

CO o TJ
CO
TJ

to'
42 * CO *• CO

C^ /^»

> Z CD -^
CD ^

CM <Z*
'S o ro -^
CD ^ 1- k. 5 5 0) CO OJ 52 CD - Q. CO CO ^-» Q. © Q. CD Q-H tP if > > 42 ■^8 ^8

CD CD CO CO

E
CD *■*

c
o

c
.2

c
o c

o
c
o

CD

3
2
3

To 2 £ 2 5 2 75 fö "ro jo "CD f0 CD "O
TJ
CD

O 3
0. O) CD

■8 a
CO a)

"ga
CO CD -^ ° CO ©

■8 5 «5
CO CD

U CD
O CD 8* 2 CD

1 TJ TJ TJ TJ TJ TJ a a

i
<

CJ

©

a
E o
o
I-
< z
©
©

D) c
tn

*J
jo
-J

UJ

iS
Q.
E o
ü
c
o
*3
(0

.O •^
"5
©
Q.
(0
©
o>
CO

CJ
CO
Q.

< a
OL
<

<
©
n
to

Fi
xe

d
in

 L
at

er
 V

er
si

on
s

by

Tr
an

sl
at

or
 D

ev
el

op
er

s

O
z
or
i-
co
_c

CM
TJ
CO
© x:

CD"
z
or
I-
co

o c
•*■*

CO

E > pr
oc

ed
ur

e
Q

TI
S

E
X

P
H
 (

vh
is

ex
l

: i
n

S
TR

IN
G

;
vh

is
ex

2
: i

n
S

TR
IN

G
);

-O
V

E
R

L
A

Y
-f

o
r

tv
16

a
us

e
at

S

ys
te

m
."

+"
(t

v8
a'

ad
dr

es
s,

8)
;

-O
V

E
R

L
A

Y
-f

o
r

tv
16

ov
r

us
e

at

tv
16

d'
ad

dr
es

s;

-O
V

E
R

L
A

Y
-f

o
r t

v1
6o

vr
 u

se
 a

t
tv

16
d'

ad
dr

es
s;

-O
V

E
R

L
A

Y
-f

o
r

tv
2a

 u
se

 a
t

S
ys

te
m

."
+"

(S
ys

te
m

."
+"

(t
v1

a'
ad

dr
es

s,

51
2)

,2
);

©

Q.
E
o
o
o
o>
c
© « c
'5 c
©
©

75
3
C
CO
2

s
Z
a:
h-
co
_c

CM
TJ
CO
©

>

CD
Z
or
h-
co
c

O
c
co
©

E > pr
oc

ed
ur

e
Q

TI
S

E
X

P
H
 (

vh
is

ex
l

:
in

 S
TR

IN
G

;
vh

is
ex

2
: i

n
S

TR
IN

G
);

no
t u

se
d

an
yw

he
re

 s
o

co
m

m
en

t
lin

e
ou

t

no
t u

se
d

an
yw

he
re

 s
o

co
m

m
en

t
lin

e
ou

t

no
t u

se
d

an
yw

he
re

 s
o

co
m

m
en

t
lin

e
ou

t

no
t u

se
d

an
yw

he
re

 s
o

co
m

m
en

t
lin

e
ou

t

E
©

2
0.

co
ns

tr
ai

nt
 n

ot

al
lo

w
ed

 fo
r

st
rin

g.

co
ns

tr
ai

nt
 n

ot

al
lo

w
ed

 fo
r

st
rin

g.

co
ns

tra
in

t n
ot

al

lo
w

ed
 fo

r
st

rin
g.

©
TJ
O
Ü
E
©

o ■_
Q. (v

he
ad

2:
 in

S

TR
IN

G
(1
 .

. 6
0)

)

vm
te

st
no

:
in

S

TR
IN

G
(1
 .

. 4
);

pr
oc

ed
ur

e
Q

TI
S

E
X

P
H
 (

vh
is

ex
l

: i
n

S
TR

IN
G

(1
 .

. 6
0)

;
vh

is
ex

2:
 in

S

TR
IN

G
(1
 .

. 6
0)

)

fo
rt

v1
6
a
u
se

a
t

S
ys

te
m

."
+"

(tv
8a

'a
dd

re

ss
,8

)

fo
rt

v1
6

o
vr

u
se

a
t

tv
16

d'
ad

dr
es

s

fo
rt

vl
a
u
se

a
t

th
ai

'a
dd

re
ss

fo
r t

v2
a

us
e

at

S
ys

te
m

."
+"

(S
ys

te
m

."

+"
(tv

1a
'a

dd
re

ss
,5

12
)

,2
)

P
ro

gr
am

U

ni
t

pr
oc

ed
ur

e
Q

tte
xt

O

pr
oc

ed
ur

e
Q

tte
st

s

pr
oc

ed
ur

e
Q

tis
ex

ph

pr
oc

ed
ur

e
Q

a9
e

pr
oc

ed
ur

e
Q

a9
e

pr
oc

ed
ur

e
Q

a9
e

pr
oc

ed
ur

e
Q

a9
e

tO (0
«0 V)
0 © >, L- ^

ja TJ TJ
CO TJ TJ

V) >_ IS ro

© ™

■•^

c
o

0
a

(0 -

0 ™ © £!
to «.

©

(0 "
3 to 2 0 3 ;£. 3 ^,

3 (0

© s
*T »-
CO T>

©
>

>
0 ä:+ re =

CM .+ CSE
n

• 0)
Q ?E *i *S 51

©
re O <**

o 0 o © til •*-»
! t0 •f S •?-s

a.
re
to si >» sL >•

OH s
E
o
ü
l-

■o c
re ^r sr a) t_ o: =

X

u.
t- LU p ^ LU C ^

> 0 <H *> ©

9 w <
z i 8? CN"

o •»= '—> V w CM V <o I >»*- 1 >.i- i >, : >. o W tfi CO w CO CO
o
f 0)
h- a ♦^ •4-» *•* *-*
O) E c c c c
c 0 © © ©
0)

o
u
o

E E E E
3 E E E E o

o
o
o

o
o o

ü

_i O)
c o o o o

w 10 to to (0
O 0 £ £ ©

I— £
h. 0 0 © © ©

UJ c sz JC x: JC

c
o

*5>
c
0
0

I
c 1.

»5
ro re re re re

a. TJ TJ ■a TJ
Q. 0 © © ©

E re
3
C
re
S

to *^ to *- to ■<- (0 »-
3 3 3 3 3 3 3 3 o ~ O *- O *- O «-. O

u
c

81 -I g.i gl
o

___ ^~
*rf
re
o
»-
u
0
Q. E
(0 0

© n
o> o
re 0.
u
re
0.
o>
<
O
_l TJ TJ •© TJ
0. o re XJ re TJ

<
o
Ü

re (o
re

© CM
n

■s ©

■
re cvj

© £
<1) CO
S -2:

ro ^.
© ^
<o c-
3 + ro =.
2|?

<
©
n
re

E
0
n
o

3 C»

© + ^
£ r- <o
* 0 to

to C-

©>.

£ <J5 CNJ

3 J^

"* =- csT

*• © to a. .°£g «£8 co 2
Hi

co £ CO TJ CO TJ

E
© © © © L. i_ Ü c
3 3 3 3 ro *^ T3 TJ TJ TJ

B) e 0 © © ©
O 3

2 O) 2 O) O ® S o> 2 en a. a. re Q. re Q. © D. ro a O a O

©

a
E o
ü
< z
o
©

I ~
CO
3
to

UJ
c
o
IP
_co

'5.
E
o
ü
>»
13
O
m
©

CO

o
CO a.
< a
<
CM

I

<
©
ja
CO
I-

Fi
xe

d
in

 L
at

er
 V

er
si

on
s

by

Tr
an

sl
at

or
 D

ev
el

op
er

s

o
c

O
C pr

oc
ed

ur
e

Q
T

H
E

A
D

(v
he

ad

t:
 in

S

TR
IN

G
)

is

be
gi

n
vh

ea
d*

:=
 v

h
e

a
d

j;

vh
e
a
d
*:

=
""

 &
 c

2a
_b

la
nk

s(
1.

.5
9)

;
re

tu
rn

 ;
en

d
Q

T
H

E
A

D
;

X

©
>
o
E
©
a:

A
II
CO

©
SZ

o,
H

C

E
sz

x'
X

t5

CO

M
an

ua
l

R
ee

ng
in

ee
ri

ng
 t

o
C

om
pi

le
 CM

CO

©

&
c.

CM
CO
CO

©

CM

O
CO

•v—

CD
Z
a:
h-
co

~i •a
CO
©

> 1x
1,

1x
2

, 1
x3

 :
IN

T
E

G
E

R
S

16

cb
p

M

rz
E
sz

x1

^x
Ü
k_
CT
CO

E
©
si
o
w
0.

c
o
ro
CO
Ü
©
T3
O)
C
o
k-

5

c
o
ro
CO

u
©

D)
C
o
5 un

co
ns

tra
in

ed

su
bt

yp
e

no
t a

llo
w

ed

T3
©
C

©

C
3
CO

X

c

1o
CO

©

TJ

O
J=

CO

©

o
Ü
E
©

o
i_
Q.

O
UJ

O

Ü
UJ
a:

a

CM pr
oc

ed
ur

e
Q

TH
E

A
D

(v
he

ad

: i
n

S
TR

IN
G

)
is

v
h

e
a

d
j:

S
TR

IN
G

;
be

gi
n

vh
ea

d
t

:=
 v

he
ad

 ;
vh

e
a
d
j :

=
""

;
re

tu
rn

 ;
en

d
Q

T
H

E
A

D
; +

M

X

o
u.
c
E

SZ

<^
x1

X

C0

P
ro

gr
am

U

ni
t

C
.o

15 2

O) CD
T3

C
o

"5 2

o) a)
■a

3

© 13
U CO
o ©

Ö

S>
3
■D
©
O *-
O ©
^ «o

©

3
■o
© CO

"3b
T3
ea
<u
>

>,

(0 &
TT in CD h- 00 o)
T"" ^~ T~ T™ T™" ^~

c S U. U. UJ 111 111 LU
5 & KKaaaQ:

a: tc cr on on a:
o >
w Q

w UJ UJ UJ UJ UJ UJ
- H h- h-1- H h-1:

UJ ÖÖÖÖOÖ5
K ooooooc

«£ fh _ o o o o o o A

P ^ 0)0)0)0)0)0)"
O + A A A A A A S2
^ T- II II II II II || CD -

CM
■ -i «

O — c
D.
E
o
o

"o n
o> «-
x H-

2 5w*mtDNcoo)£S
3 — i-rr-rrrOm -n II CM w CO
m _ •" • X C C C C C C C O U. ft .£_>CO<DCDOJ<I)CÜQ)i-)

i rs <
Z
o

1 o

e> O
JC 0

3
D> *JT •o
C 0) CD

3 J* o S:
fc 3

+^ o) a Q-XJ
V)
_l

o
II
CO

(A o
•= o
£ o

b. CO
UJ 3 £? CD Ct
c C

CO
2

Ä -o uj
o
to

.E w H

Q.
E
o o

- o> ^

E
o

w o c o
<D £ T> 1- CO p
P> — CA CO . 'c £
cö •- 2 Z •■£ E 2 o XI ~ w i; *= £ O CO

m
0>

o
k.
Q.

o c £ o — °-
o Q) 3 E co a) 05 E "g -o § .2 £
5 J2 o ■» o o) c
£ s 2 3 e §• o

a
je
o
a a. CO Q. O 0.& .fc:

O)
<
a UJ
-1
a. a> £.2 •s2 < •D ■"^ oooooo 2<

O — CM ■« *; -5 ** ** ü A ÜJ
CM Ü

E
1 co 2.2.0000 A *■*-.

<
•0CO 0)0)0)00)0)
— c5 AAAAAA

11 u.1

SO
CD 1

o 3

§:
0
SI

a
n
o

O O) CO 'I 1 II 11
CD £ CM? ^ £ lf>£ Co£ ^ »„O)^
i=.E Xt-^-T-^T-^^-^T-

CO
•-K-
© D.
CO i_

•So
Q) C

r- £ ■ntr >£u-£Ll-£WCUJc:ujc:uj

2^CDOSUJSUJSUJ5UJ?UJ5UJ
a. > .a H •- •- •- •- 1-

c O
a> 1
-5 X : 5 UJ

D
— o o a a a a Z

E
CO <M

3

g W
O D O Q.
a. Q.J2

Ö

CO
1

0)

"ä
E
o
o

<
Z

Fi
xe

d
in

 L
at

er
 V

er
si

on
s

by

Tr
an

sl
at

or
 D

ev
el

op
er

s A
II

2
(1)

II

c
E
x:
T—

x1

X ^—*
2
cr
TO *-*

o
c *-»
(0
0)

E >
ii

CM
CO

a>

0
x:
c
(0
x:
>

A
A
Q

a.1

o o
_J
V
V

ji

E
in
> A

dd
ed

 th
e

fo
llo

w
in

g
fu

nc
tio

n
in

 th
e

m
at

hp
ac

 p
ac

ka
ge

.

fu
nc

tio
n

"*
*"

(X
 :

in
 I

N
TE

G
E

R
;

Y
 :

in

 F
lo

at
)

re
tu

rn
 F

lo
at

;

Q
TI

S
E

X
P
 (

F
lo

a
t

To

ln
te

ge
r(

 v
aw

s9

*
(2

**
9

))
,

8#
33

00
0#

);

o
a>
f
H
O)
c

"3>

(0
_l

o fa.
l_

LU
c
o
(0

o
O)
c
™

1:2
O) Q.

TO
3
C
TO
s

ö
p

it

£

x1

X,
- o k-
cr
TO

II
*^
<N
CO

O)
CM,

11
>» co
CO a>

^E >

A
A
a.
O
O
_j

*J

V
V

II

:3
E *-*
x:
>

So ^
| o) «
«IS?
£5 1

«I J O « X
« 5 II

■^ X N
«

ST
CO
5

w ro

KD:*
LU LU §
CO O O
iT LU CO

^ 00

Q.

E
o
ü
>»

■o
o

CD
a>
o>
TO

o
TO

E

o
Q.

05
C

"u-
■

CO
TO
<U
XI
T3

O
J=
CO

H
8»

"5
o

«

d)
co

TO
<

»*-
o
k_
0)

XJ
E
3
C

0> CO

> TO
> a.

CO

o
CO c
10 c o
T3 CO .E

CO *J TJ O
"TOCO.
>» O TO X

5= x: CD

o
c
o
Ö
o
c>
co

is
> 15 >

< a
_i
a.
<

■
<

TO

0)
■o
o
Ü
E
0)

8
a.

o
M

3
E *-•

x1

X

I
cr
TO *-*

II

T3
(D
x:
c
>»
CO
x:
>
X o
IT) £
s^ CO

co£
CM E

>

A
A
a.
O
O
_i
V
V

II

3
E *-»
x:
>

* *
X
II

N

o"
c!
o
c>
a>
CO

s—^ CO

LU LU 2
CO Oo
ET LU co

= CO

E
TO **
&|
O 3 k.
Q.

a>

■a
<D (0

3 CO
•o a.
a> o

a5

2
=> CO

TJ Q.
« o
£ c

J? >>

a>
L_
3

"O
(1)
Ü

2 "E
D-iS

CO

"8 'S 2 "

Q. ro o o c
Ö 1- O O

^ S 2 °
ü m_ t CO

Q- TO o O M_
Ö 1— o o

Q.
E
o
o

<
Z o
©
x:

O)
c

*55
D

2
in

a
E o a
>>
•o
o

03
e
t»
CO

o
CO a.
< o
_J
Q.
<

I

<
©

CO
I-

■° (fl

•2 §"
el
© >
> 0»
•- Q
© t_
o o
-J CO
c "55

T> CO
© ,»-

©
CD

D> —

• 5 a. ° z Ü
CO
3

X
©
to

XT to >
*■—\ • - 00 00

T (■) —i **| CD ;~. © 2-s
N' O O CJ O a. 2

X a: X X CO CM CO CM
in © Q) D. : Q. , fc
CO f— UJ w w i- to T-

(0 f- .ri t- >— ^ — J..
H r* > .C > t0 < to £L
O II „ II C II c

.". • • _co • • ro
CM T- -a CM -D,

X

3
■D

~i T-

Ltl
CO

CD CM
X

X
Cl>

X X „1 X „1
CD CD CO CD tO c 1- o

T7

(1)
U
n

2
a:

©
to rax:

to to CM «0 CM 3
ID L_ sz CD > > > > r

Q-f- > n (1) w

Ü ~

A
II

E
2. n o

t- _
CO °

^ .".
CD ;~.
co o
•F CD

o
I

<
"D
Q)
5

■o o
CD ^-
c CO
CO o

f-
to
c CD
o a.
Ü & l_ r> _1 3

(0

0
"O
o
Ü
E
©
XJ
o
a

E
w «^
fee
O 3

Si
25 S
CO c

CD CD
2 2
a: a:
i- \-
co co

T- CM
X X
CD CD

<D CD
O Ü
CO CO
a. Q.

.«2 .«2 to to
x: x: x: x:

O
CD ft—
3

> >
II II

> >
II II

X ..
CD CD m T- CM

« 52 CD ©
— to to

!c IE
> >

© x: x:
TO
©

3;??;?..
X X X X --
© © © © E
to to to to 3
x: x: x: 1c "55 > > > > 2:

r a. x
ai
co
h- o
©

©

If
O * S= to

a

CO
X)

M

2
J5
>

T3
c
a

a w
In >

IO
1

l_

a>
ä
E o o
<
Z

Fi
xe

d
in

 L
at

er
 V

er
si

on
s

by

Tr
an

sl
at

or
 D

ev
el

op
er

s

pr
oc

ed
ur

e
Q

T
IS

E
X

P
H

(v
hi

se
x1

t:
 in

S

TR
IN

G
;

vh
is

ex
2_

t:
in

 S
T

R
IN

G
)

is

be
gi

n
vh

is
ex

l*
 :=

 v
hi

se
x1

_t
;

vh
is

ex
2*

 :=
 v

hi
se

x2
_t

;
vh

is
e
xl

*
:=

 v
hs

pa
ce

 &

c2
a_

bl
an

ks
(1

..2
0)

;
vh

is
ex

2*
 :=

 v
hs

pa
ce

 &

c2
a_

bl
an

ks
(1

..2
0)

;
re

tu
rn

 ;
en

d
Q

T
IS

E
X

P
H
 ;

c
CD

o
d
^-
CM

i

II
o>
co

CO >

o
i^ ■
ii

O)
co

CO >

o
CO
CO
CO

II
CO

>

©
CD
£

O) c
CO
3
4-1
CO

_l

o
l_

UJ
c
o
IP
CO

M
an

ua
l R

ee
ng

in
ee

r
to

C

om
pi

le

vh
is

ex
2

t:

S
TR

IN
G

(1
..6

0)
:=

(1
..
6
0
=

>
")

;

o
d
■"4-
CM

II
O»
CO

CO >

o
1^

1

II

CO
5
CO >

o
CO
CD
CO

II
CO

>

Q.
E
o
ü
>»

■o o
m
Q>
O)
CO

o
CO
0.

< a
Q.
<

■
<

xt
CO
1-

E
0)
XI
o v.
Q.

un
co

ns
tra

in
ed

su

bt
yp

e
no

t a
llo

w
ed

va
w

s9
 is

 d
ef

in
ed

as

 fl
oa

t

va
w

s9
 is

 d
ef

in
ed

as

 fl
oa

t

vf
s6

 is
 d

ef
in

ed
 a

s
flo

at

0)

o
Ü

E
CD

XI

2
a.

pr
oc

ed
ur

e
Q

TI
S

E
X

P
H

(v
hi

se
x1

 :

 in

S

TR
IN

G
;

vh
is

ex
2

: i
n

S
TR

IN
G

)
is

vh

is
ex

l
t:

S
TR

IN
G
 ;

vh
is

ex
2_

t:
S

TR
IN

G
 ;

be
gi

n
vh

is
ex

1_
t

:=
 v

hi
se

xl
 ;

vh

is
ex

2_
t

:=
 v

hi
se

x2
 ;

vh
is

ex
1_

t :
=

vh
sp

ac
e;

vh

is
ex

2_
t :

=
vh

sp
ac

e;

re
tu

rn
;

en
d

Q
TI

S
E

X
P

H
 ;

c
CD

XT *-»
o
CM

II
O)
CO

CO >

c
CD
XI *•*
t*-

1

II

co
5
CO >

c
CD
sz *"*
CO
CO
CO
h-
T™

1

II
CO

f

P
ro

gr
am

U

ni
t

pr
oc

ed
ur

e
Q

tis
ex

ph

pr
oc

ed
ur

e
Q

a9
b

pr
oc

ed
ur

e
Q

a9
c

pr
oc

ed
ur

e
Q

a9
e

ta
X> o
"ob
T3

O

T3

X
<0

•o

X
en

>

Q.

E
o
ü
l-
< z
o
e

JZ
t-

_c
CO

D

u
c
o

a.
£
o
ü
>.
o
m
CO
DJ
CO
J£
o
ce

CL
o>
<
O
u o o
Ü

CO

<
£
ce

to
c s

« >
w Q
© i_
« O
-J CO

c to
~ c
^ CO
0) *-
x r-

o.
E
o
ü
o
D)

O
CO
c
a
c
0
CD
a.
"5
3
C
CO s

E
CD

2
o
L.
0.

CD
•o
O
o
E
CD

B o

E

O 3

o
c

c
g
o
c
3

LL

£l
TO *-•
C
CO

E
0)
ID

3
O
D

o
c

0 v>.

^ >
° CO

CO

CM
CO

E TO
O <=L._

2 §" TO TO
■D 2 E

CM
CO

E
O

o
c
3

TO *-»
C
CD

E
Q>

ID

X)
3
O
D
cu
to
3

i
<

XT
TO

Ö

(J TO

TO

Q) v;

CN « 5£

Era« ü o. «
_l 13 .C >»

S °.ö TO

2 & TO TO
r5 E

CM
to

E
ü

CO
3 TO

_0>

"5.
E o
ü

< z o
CD

JC

Ut c
15
D
(0

UI
c o

a
E o
ü
c
o

55 a o
Kj
O a>
Q.
0}
0
Ö)
CO

u
(0
0.
o>
< a
< a
2

<

JD
CO

Fi
xe

d
in

 L
at

er

V
er

si
on

s
by

Tr

an
sl

at
or

D

ev
el

op
er

s
o c O c

©

Q.

E o
ü
2
i_
<u
c

#c
"5> c
0>
Q)

«
3
C
CO
S

TY
P

E
 F

lo
at

_s
s

IS
 D

IG
IT

S
 7

;

TY
P

E
 F

lo
at

_S
 is

 D
IG

IT
S
 7

 R
A

N
G

E

-8
#0

.7
77

77
77

7#
 *

 2
.0

 *
*

Fl
oa

t_
ss

'S
af

e_
E

m
ax

..

8#
0.

77
77

77
77

*

2.
0

**
 F

lo
at

_s
s'

S
af

e_
E

m
ax

;

TY
P

E
 F

lo
at

_d

IS
 D

IG
IT

S
 S

ys
te

m
.M

ax
_D

ig
its

E
a>

o u.
Q.

nu
m

be
r t

oo

bi
g.

nu
m

be
r t

oo

bi
g

O
■Ö
O
Ü
E
o>

2
a.

TY
P

E
 F

lo
at
 s

 IS

D
IG

IT
S
 7

 R
A

N
G

E
 -

8#

0.
77

77
77

77

*
2.

0
**
 1

02
3.

.
8#

0.
77

77
77

77

*
2.

0
**

 1
02

3;

TY
P

E
 F

lo
at
 d

 I
S

D
IG

IT
S
 1

6
R

A
N

G
E

-
8#

0.
77

77
77

77
77

77
77

77

77
6#

 *
 2

.0
**

 1
02

3.
.

8#
0.

77
77

77
77

77
77

77

77
77

6#
*

2
.0

**
 1

02
3;

C
3
E
2
U)
o ■_
Q. pa

ck
ag

e
C

m
s_

2_
Ty

pe
s

pa
ck

ag
e

C
m

s_
2_

Ty
pe

s

i

<

SOURCE LINES OF CODE COMPARISONS

Figure A-l shows the source lines of code (SLOC) for the translator generated Ada QA9s and
CMS-2 QA9 programs. Ada SLOC was counted immediately following translation. The first three
sets of bars (left to right) in the graph represent the translated Ada code produced by the TRADA,
APL, and CCCC translators, without the predefined utilities that each of the translators provide. The
right three sets of bars represent the corresponding code for the entire program.

CMS-2 line counts for the CMS-2 SLOC is the total number of executable statements ending in
"$". Comment lines are statements beginning with the word "comment". Text counts are total lines
as counted by a text editor.

Ada line counts for the SLOC for the Ada source code is computed as the number of statements
ending with a ";", except those occurring in comments and character strings.1 Comment lines were
counted as lines that contain two successive hyphens not embedded in a character string. Text count
again are total lines as counted by a text editor.

We do not believe that any meaningful conclusions can be drawn from the SLOC metrics in and
of themselves. (See Appendix D for a discussion on problems using SLOC as a metric). However,
figures for executable statements support our conclusion that all translators implement a
transliterative approach (Appendix C).

HALSTEAD METRICS

Halstead metrics are shown in Figure A-2. The graph shows the overall program length, the
vocabulary size, and the actual volume for six program units produced by the translators. These
units represent the majority of the QA9 code. As seen from the graph, the translator outputs mirror
each other and the CMS-2 code. In other words, the translators produce Ada code that closely
resembles the CMS-2 code. QTCON1 vocabulary is very low for TRADA because TRADA moved
the complex vocabulary to another subprogram (QTMESSW).

MCCABE CYCLOMATIC COMPLEXITY METRIC

The McCabe cyclomatic complexity metric for the QA9 procedures is shown in Figure A-3. The
McCabe cyclomatic complexity metric is based on a graph theoretic interpretation of program
control flow and provides an indication of structural complexity. More explanation of this metric is
discussed in Appendix D.

As seen by the graph, the translated source code mirrors the CMS-2 code for most of the program
units. In units QTCON1 (Figure A-3. McCabe Cyclomatic Complexity Metric - 1), QTSYNOPS
and QA9A (Figure A-3. McCabe Cyclomatic Complexity Metric - 3) the CMS-2 code is
considerable more complex than the Ada code because the CMS-2 code uses constructs that are
considered more complex.

In this table, note that the Ada code for QTCON1 appears to have significantly less complexity
than the original CMS-2. This occurs because QTCON1 contains a procedure switch (P-SWITCH)
which was translated to an Ada case statement whose complexity is shown under QTMESSW.

1 The source listing for the Ada SLOC counter is given in Appendix J.

A-14

(Note that only 3 bars are present for QTMESSW) For example, the QTCON1 CMS-2 has a
McCabe metric of 13. TRADA resultant Ada has a McCabe of 10 (7 for QTMESSW plus 3 for
QTCON1).

Figure A-4 represents the complexity versus the percent of the QA9 source code produced by the
three translators. This figure shows that most of QA9 produced by the three translators is very
complex. See Appendix D for a detailed explanation of the cyclomatic complexity (V(G)). As
seen from the graph, the translator outputs mirror each other with only about eight percent of the
code having a V(G) less than 10, about 65 percent of the code having a V(G) between 61 and 70, and
about 25 percent of the code having a V(G) over 90. Keep in mind that V(G) greater than 50 usually
means the source code is incomprehensible. These results are another indication of the translators
producing Ada code that resembles the CMS-2 code.

A-15

re U CM
T3 O to

D. O 5
1- < o o m ■ D D

a
■o
o
o

m
9
C

< a

l-J-,,,,,1

p?

'■

^^1

E
E
o
O

o
a.
m

o
o

3
o

CO

O)
o

•o
a

a

E
E
o
o

5
a. E
3 =
o

o
o
o o

o
o
o

5 c
3
O
Ü
a>
c

< a
(0

<
0)
a
(0
c
ra
k.

■o
c
n
■

CO
S u
< a
<
s»
3
O)
u.

o

c
CO
en

C

c
CO

c
1)

c c
V Ü

fi t>

fl) CO
4-» eu w c T3

CO 3
c o

U
4) c

o «
f) CO

E fce Ü

60 •o
CO C CU

em •*-J c
c c es

"O
4>

X)
•a
■*>» c
3

o X) O
C)

fl> E
O E

3
C

s CO CJ
c C|-i
CO u O

o CO

u J eu
o C/3
-J <N CO
C/3 i

•a
<

x

<N

u

i
<

Ü
o
n (M

o
o
E

D. < (0
5
o Ü

o
S

<D (0 Ü
tr 1- o Ü
3 0)

E
3

O > o
CO

e
Q.
< (0

■o

> (D
u
o > 5 <> CN

o > n
CD
u
o >

5
(0
o
o >

CO

5
ü
Z
£
c
0

Ü
Ü
ü
o

z
<

C0 o

o
E
•o
n «

(S
X

36VD

Q6VD

06VD

in u

0)
S
■o
ra

•*-•
J2
re
X
ei ■
<
o
l_
3
O)
il

c-
I

86V0

V6VD

N00±DV co

•pntjuBtw

Ü CM
■o _J (> c/j
C O. O >
1- < O o ■ ■ D D

>

x o
Q.
E o
o

> e
n
m

\ ü o
! S *if~$ ^*»*^>~ w^^m«»J»*?"^'«^-v;*>t»»tq3fc«<E*acm«l'»*^iiM

D.
E

0)
2
£•
X a
a. t/i

F
o •a o o
o o
- B. re
E
o t/3
u UJ
>> ^
O H
a a
n ca
re TJ
Ü <
o U

5 ■£
o

n c
< •o
a .22
L. CO

3 t/i

O) c
CO

to
CO

s •—*
z
o
o
H c

"o.
E o o

U

o
Z

i
<

Ü CM
T> O CO
to 0. o i
H < o o ■ ■ D □

e>

5"
x
o
Q.
E
o
o
o .o n
U u
£

C^.x^v."S-<»*-^.v".yf^V-.^V.

 |

 : smmmSsiimiBmmmmmmmgmBi

. ■

x

a
n.
E

o
c
o
i*
C3
en
d>
u
C
<a
i*

£ <<~c

-o
<u

-G
H

«
0)
h*
3

•o
O
u
o
1-1
Q.
u.
4>
.a
o

N c - C3
J3

Ü

+■» <u
0) 3

5 ■o

3?
o
o

X Q.

o
a

CQ a.
E X
o m
ü
o a

<-> T3
CO C

E re
o ai
o
>» o
(1)

H
00

■fi as
re
ü
o
2
<o a 8
<

u. £0
<*S CO

0) i- •-
t_ » >%
3 * C Si s

1L B0 <D

>> "c3
3 O
C3 «
U /—v

'5 o
s >
2 2 T3 -G
u c_,

x> o
O u
** -a
£ 5 CO ««
ID G
O. 60
n. cs « g
Ü £
> <L>
*J U
CO c

■£ 'm
S G"
O C8

■7 °
* c

60

t
<

Ü CJ
■D o CO

0. <J >
t- < o o ■ ■ D D

a.
E

CO

o
II
*J
CD

2

x «
a
E
o
ü
o
CO

E
o
u >. u
a>

JO
n a u
S

*?
<
SI
3
D>
U.

c/>
Z o
u
H a
«
<

C u
E

u
CS

o

•o

c
es a
V)
to

oo
Si
H co

y 75

C8
u
es

cs
E

CS

o
CJ
Crt
3
CO
CJ

eu cs
•" «i 3 S>

8 Je
•° t-

00 CN

1c Cfl
i s
s o

"I >i
f- c

CN CJÖ

of) S
S u
U <u

TO (U

** 3
CJ T3

| 8

o
CN

Complexity versus Percent of QA9 Source
Code

-r"'-

90

80

70 •

WBmmmm

MgSSIIll

60

SVG91-10Ö

50
DVG 61-70

aVG 11-20

Percent

40

«VG 1-10

30 •

20 ■

10 ■

U -1 ; ^ 1 1^ 1 1

Trada CCCC APL

Translator

Figure A-4. McCabe Complexity versus Percent of Ada QA9

A-21

CONFORMANCE TO SOFTWARE PRODUCTIVITY CONSORTIUM GUIDELINES

The reworked Ada QA9 code produced by the translators was analyzed for conformance to
the Software Productivity Consortium (SPC) Ada coding guidelines. The SPC presents a set of
specific guidelines for using the features of Ada in a disciplined way intending to produce high
quality Ada programs. These guidelines are the most widely accepted Ada guidelines that exist
today. Conformance was analyzed by processing the Ada code with the standards enforcement
editor of Ada-ASSURED. Ada-ASSURED is a language-sensitive editor for Ada that supports
the enforcement of quality and style guidelines and can be set to enforce those guidelines
developed by the SPC. All three translators produced Ada code that mirrored the CMS-2 code.
Therefore, poor quality CMS-2 code will be translated into poor quality Ada code. Because the
CMS-2 QA9 sample violated SPC guidelines, the corresponding Ada code also violated these
guidelines. All three translators produced code that had similar coding violations. These
included:

• UseofGOTOs
• Non-constant object declarations declared in the visible part of the package specification
• Use of Labels (associated with GOTOs)
• Use of unnamed nested loops
• Subprogram body size exceeds maximum of 200 SLOC

Table A-5 shows the total number of SPC coding violations for Ada QA9 produced by the three
translators. These violations were detected by the tool Ada-ASSURED.

Table A-6, Table A-7, and Table A-8 provide detailed information on the coding violations
flagged by Ada-ASSURED for Ada QA9 code produced by the APL, CCCC, and TRADA
translators.

These tables identify the Ada program unit where the violation occurred, show the problem code
(where appropriate) and provide the violation as reported by Ada-ASSURED. When the problem
code is many statements long, it is not included in the table. Instead, a brief explanation may be
provided in the problem code column.

A-22

B)
n
(0
D
«s

<

Ss
c o

<B (0

II
V) -a

0) (0

<
Ü
0.
0)
«

Ü
3

o
Q.

<
oS

■
<
©

n

Lo
ng

lo

op
s

m
us

t
be

na

m
ed

CM CM CM

S
ub

-
pr

og
ra

m

bo
dy

si

ze

ex
ce

ed
s

20
0 m IO IO

N
on

-
co

ns
ta

nt

ob
je

ct

de
cl

ar
at

io
ns

no

t a
llo

w
ed

in

 t
he

 v
is

ib
le

pa

rt
 o

f t
he

sp

ec

o
CM
O
CM CO

B
lo

ck
s

m
us

t
be

na

m
ed

o CO o

E
xi

t
S

ta
te

m
en

ts

fr
om

na

m
ed

lo

op
s

m
us

t
be

 n
am

ed

o CO CM

N
es

te
d

Lo
op

s
M

us
t b

e
N

am
ed

CM CM CM

U
se

 o
f

La
be

ls

CO
o>
CO

O)
CO

U
se

of

G

ot
os

CO
O

CO o CO
O

N
am

ed

A
ss

oc
ia

tio
n

CM o O

U
se

C

la
us

e

CM CM O

«
w s
s
1-

Q.
<

Ü
Ü
Ü
Ü

<

1-

M
re
u
re a
<u
si

s o
'S
M
"o

cu -o
u

S1

o
■ 'S re

CO
S
O
u
I e o
c

3
U

'S
"2
'3
M
U
OH

<o

s

o u
u
<

£
CO

60
O

T3
eu
co
3
S
3
u

re
^3

W «2 CO T3

O >

s ^
S 2

•o 3 u o
3 co

8.1
Ü,

u *"
U 8

©
O)
CO ^
u
CO a.
CO

*♦—

O o
UJ •c
a. CO

3 CL

(0 ©

CO X

< 'CO
_J •

(0 ■>

a. "O © o o
o o o o < < £ o o o o

>• >, © c CD CM CM CM CM CM
n
•a
©

XX

©

o
Q.
0>

CO
3
CD

TJ
CO
3
CO CD

o
E
3

»tw
o
E

o
E

*•—
o
E

o
E

o Ü *S o $ 3 3 3 3
3

■D
O

©

p
E
©
CL

0)
CO
p "co

E
'x
CO

E
'x
CO

E
X
CO

E
X
CO

E
X
CO

Q. a •R o
c

CO

•R o
c E E E E E

o> CO © CD CO
TJ
©
©
o
X
©
m
oo
CO
»•—
o

CO CO CO CO

< a
«

TJ
<

C
o

n
to
c

c
o
Ü

c
o
o b

TJ

TJ
©
©
O

TJ
©
©
Ü

TJ
©
©
U

TJ
©
©
Ü

33
CO

o
>

c

©
in
3
co

CO
c
g
CO

CO

u

TJ
CD
CO
3

CO

TJ
CD

o

O
Ü
CD
O
c

'co

©

E
CO
c
CD
X

TJ
©
E
cc
c
©

X
©

CO
V)

o

X
©

to
*•—
o

X
©

m
m
**-
o

X
©
o
to
m
«♦-
o

53
a
o
>
©

V)
CO

■o

<
Ü

c
■o
o
Ü

E

«5
>.

co
LJ
CD

1=

C
CD

TJ
V

no
n

co
ns

ta
nt

 o
bj

ec
t d

e
pe

ci
fic

at
io

n1

"E
0)
to
CO

L?
CD
£
*-»
C
CD

CD

+-»
o
c
CO

b
I-
O
Ü
>♦-
o
CD

TJ
CD

o
"5
o
c

CO

CO

CD
.Q

_J

<
-
CO
3

E
co
D.
O
O

TJ
©
«5

X

(0
3
E
O)
c

_o
CO

!c
CL
o
o

©
N

'co
>.
TJ
o
XI

E
CO
k.
D)
o
Q.

JD

©
N

'co
><

TJ
O

XJ

E
ro

o
k.
Q.
XI

©
N

"co
><

TJ
O
XI

E
CO
k-
D)
O
k.
CL
XI

©
N

'co
>>
TJ
O
Xt

E
S
o>
2
CL
XI

©
N

'co
>>

TJ
O
X

E
CO

S
CL
X

0L x X CO CO © 3 3 3 3 3
CO t- H 3 _l Z < CO CO CO CO CO
c CO

10
w CO a

i

-
c

» © c ©
O TJ 3 E
to ■
<
e

o
Ü

E
o
X

E

to

CM
CO
3
k-
CD

©

E
©
to CD

A
A

©

TJ
©

© uT
C D.

Ä g

© *-*
CO

CO

if E o

1 1 1 . 1

a o >* C >. u.

h- b. CO ^~ CO O 0) Q. —
a.

0 ^ CD o a S TJ
3 © §1 CO

3
X

CO
CO
3

o V
V £1 s—' CO

c w>

** CO n u TJ © c Ü
©

o> O) o> OJ O)
3 CO CO CO CO CO

E
2
o>
o %m

a. o a a a a a
CO X p © CD © CD
CD j*
O) o
CO o ro o

3
TJ
©

i—
3

TJ
©

3
TJ
©

k.
3
TJ
©

3
TJ
©

a. o tr o c u U u Ü Ü
CO OJ CO OJ o O o O O
Q. CO

a
 L

Q. CO

o
L-
CL Ct CL CL CL

C

3
U
u o

CD
CD
CO

J*:
CJ
CO
Q.

CO
»•—

Q
IU

o

K CO
Q.

D CD
CO
CO

s
ü <: CO

■>

ü CO 0) ü XJ o
ü
£1

<
>> a>

CO
3 T3

CD
CO
3

o
"O

o
CM

o
"D •a

2
o
a

CO

o £ CO

Ü
E
3

CD

5
E
3

o
3

■D
o

CD
CO
3

E
©
Q.

CD
CO
3

E
'x
CO

E

6
"cö

E
X
CO

o. a: * o ■s
o
c E

<
(0
CO

M
c

o
Ü

c

CO

CD *^
c
o
Ü

CO
TJ
CD
CD
CJ

CO

O
-ci

CO
T3
CD
CD
Ü

CO
"O

<

cö
c
o
*3
(S

O

>
CD

o
*5
CO

O

>
CD

_c
13
O
o

T3
CD
(0
3
CO

E

CO
>.

CO

CD

CO
c
_o
*-^
CO
k-
CO
Ü
CD

■o

o
CD

o
-
C r-
co f--

c
T3
CD
CO
3
CO

E
S
co

CO
w
CD

X
a>

CO

M—
o

a.
CD

CD
c
■

CO
CD
c

T3
CD

_o
15
■

o
c

.co

b

O o
CD
CJ
c

'co
•a
CD

5
o

"cö
o
c

■a
CD

E
CO
c
CD

x>
■•^

CO
3

E
CO

CD

E
CO
c
CD

.O

_l
_l

<
CO
3

E
co
Q.

-ci
a>
E
CO
c
CD
.Q
*-»
co
3
E
CO
c
o

X
CD

CD
m
CD
«•-
o
CD
N

'co
>.
■a
o

E
(0 «= <£ ■^ O

O
CD *: o CO CO

(0 "E co o
C -£S

** c c
CD CO o o !c co

<
ü
Q.
CO

a>

CD

O CO
CJ Ü
c S o ° 5 CD

co

CD

CD

E
CD ^-»
CO

o
CD
CO

co
CD n
CO

o
_l
CD

■D

to
CD

CL
o
o

o
a
n
3

1- H CO !D _i 5 z < CO

c
o
M

CO
*■" 0)
0>
Q 13

O ||

<

Ü

E E
CD

k-
<D
CO

E
CD

1 8>

A
A

1 1 , 1

«j 21
o

co CD
■•-» CO

Urn

£ A >% C >. k-

CO CO "^ CO O CD
1- CL a)

CO
3 CO

CD
CO
3

o
o
CD

a
V
V

«■»

C

£

Ü
CD
a.
CO

O
J3

CO
CO

o
CD

2 CD CD 3
O) CD ^ CD ^ T3 o 5 o 5 o CD
ll ■K o ■£ o CJ
Q. CO CJ

at5
« ET
Q. CO a

o
k-
Q.

in

c a
e
3 u

CD
D)
re

JM:
ü
re
a.
re

**—
a o
UJ ■e

a: ra
3
CO _Q)

CO JD

< < '(/)
D f

re
■o
<

'>

2 a)
o o O O O ** o o O O O

>. c CM eg CM CM CM
>! A *» «•- «»- ••- kV- H—

JD

0)

XI
CD

■D o o O o o
"D CD

5 E E E E E e ■c E
k.

3 3 3 3 3 u
3 o _o E E E E E a.

«0
re

Q.
re X X X 'x "x o +-* ra ra ra ra ra

Q.
4-rf
O
c

o
c
CO

E
(0

E
(0

E
in

E
CO

E
CO

<T> (V X> T> X) T> XI
< M k_ O

o
CD 0) <D CD CD a

«8

c
o

re
CO
c
g

CD

(U
U
X

0)
Ü
X

CO
o
X

CD
Ü
X

CD
Ü
X

■o re O E CD
0) V <u CD CD

< o re xi CD
O
C

ra
c E CO

00
CD CM

CD
CO
CD

CM
CD

M
C
o

> re a>

'S
o

CD
ra
c
CD
X)

CO in m m LO

O)
c

o
CD
x>

'co
T3

X)

_1
_l

o
CD

o
<D

«♦-
o
CD

<*-
o
CD

O

CD

ra
o o

0}

5 < w
3

N
"<o

N
'in

N
'in

N
'in

N
'«0 o .CD c _o «5 E >* >. >. >. >,

> 5' (A "ro 3 TJ •o TJ T3 XI

e o E CO O o o O o
c -

<o o

Ö
1-

"o <0
a.

c X) x> XI XI XI

£? c o E E E E E
CO
(0

o CD
k-
ra

o
o

(0 ra ra ra
CO

ra ra
k-
O)

■o o re >»- (0 •D
Q.

o O o o o
< o o o CD k. i— k» k. \Z.

•y CD

CO

"55 O a. Q. D_ Q. n.
Ü
a.
CO

0}
0)

XI
ra
_i 2

o
<

X)
3

CO

X>
3

CO

X)
3

CO

XI
3

CO

X)
3

CO

c
o
CO ^~
2 o

II 3*

D o o2.
ee>

■

<

o
E

CD := 1 °
x < 1

A
A

1 , 1 1 , 1 ,
a>
xi
CO

xi
o

QL

■t- A
X 'I
CD CO

a5
O

1- CO >-
~ Q)

o O
£ XI o V

5. CO V

(0 co CO
*rf re X) u T3 a> c o

Q.

>>
■D
O

CO CO CO CO Oi
3 re re ra ra ra
E
2
a o

Ö a O a a
CO XI £ 0) a> CD CD
CD
CO
re c

CO
re r-

■a
0)

b.
3

■D
0)

3
k.
3

X»
CD

3
XI
CD

Q. o o " 8 ra £
a. cr

o U Ü U U
re S
a. cr

2
Q. Q.

2
D.

9
D.

2
Q.

. 1 * <

CN

C

3
U
U o

CONCLUSIONS

1. The complexity of the Ada code produced by the translators mirrors the complexity of the CMS-
2 code. This is shown with the McCabe and Halstead metrics. The translators do not introduce
complexity.

2. The complexity of the Ada code by the translators is similar. Complexity is the same across
translators. This is shown with the McCabe and Halstead metrics.

3. The Ada produced by the translators all needed some reengineering to compile cleanly. APL
fixed a number of bugs that simplified the reengineering of the APL produced Ada code.

4. The translators all produced Ada source that needs to be made compliant with SPC guidelines.
The translators have similar problems whose origins are in the CMS-2 code.

5. The variable names produced by the translators usually matched the CMS-2 names. This was
extremely useful in comparing the CMS-2 code with the translated Ada code. These names
could later be converted to meaningful names during the reengineering process.

6. All translators produced indented Ada source code.

7. The sample selected CMS-2 QA9 was well suited for translators.

A-27

APPENDIX B : RESULTS OF STRESS TESTING

The purpose of stress testing is to examine the performance of the APL, CCCC, and TRADA
translators when faced with a spectrum of CMS-2 language constructs as seen in todays CMS-2
programs. This phase thoroughly tested the ability of translators to handle all CMS-2 constructs.

TEST CASES

Test cases used for stress testing were:

• The Machine Transferable Support Software (MTASS) CMS-2 Test Suite

• CMS-2 code from NAVAIR, NAVSEA, and SPAWAR projects

The MTASS test suite was specifically designed to test CMS-2 compilers. This collection of
CMS-2 test files, containing CMS-2 programs, evolved over a period of 20 years. These files were
designed to be more "harmful" than normal because they test variable extremes and compiler weak
spots (e.g., rules of arithmetic) largely discovered by user reported errors. A comprehensive list of
CMS-2 test files is found in the Machine Transferable Support Software (MTASS) Revision Test
Plan Procedures (RTPP) document (FCDSSA, 1993). Those selected for stress testing are shown in
Table B-l, and Table B-2. Not all CMS-2 constructs have an associated test file(s). However,
where test file(s) existed for a CMS-2 construct, one was selected as a traslation candidate. This
resulted in a total of 84 files being chosen from the AN/UYK-7 functional Quality Assurance (QA)
test suite for translation.

These QA files represented at least one functional test for every translatable CMS-2 construct
(e.g., numeric expression) where a test file(s) existed. Sometimes non-translatable constructs (e.g.,
overlays) were input to examine translator behavior. Several of these files contain forced expected
errors. These tests are very appropriate for testing legacy programs because they typically contain
non-translatables and other errors.

The CMS-2 source code contributed by NAVAIR, NAVSEA, and SPAWAR included the Extra
Low Frequency (ELF) Communications, MK-2 Fire Control System, AEGIS AN/UYK-43
SPYLOOP, S3-Aircraft Tactical Mission Program (TMP), and H60B Helicopter projects. Points-of-
contact for these projects are given in Section 2. Results of the stress testing appear in the Table B-
3, Translating and Compiling Using Project Contributed Legacy CMS-2 Source Code.

We also selected QA9 from the AN/UYK-43 test suite for testing during this phase as well as in
the Quick Look and Reengineer to Execution phases. QA9 performs the most comprehensive
numeric testing. QA9 does self-checking (vice manual checking) to compare CMS-2 execution
results with expected results.

MTASS STRESS TESTING

Each CMS-2 test file was originally designed to be compiled with a compool (pre-compiled
common system data) then linked with a Test Controller (TC). For translation purposes, the
compool and test controller, both in source code form, were included directly in the translation run

B-l

stream using the INCLUDE directive. TC CMS-2 code for executive input/output requests,
producing test results for self-checking QA files, was strategically commented out. These services
were not applicable to stress testing, and would be provided as needed for execution testing in the
Ada modified TC via TextJO, IntegerJO, FloatJO, and other 10 packages from the Ada
Predefines.

CCCC and TRADA were stress tested on an NRaD VAX 11/785 computer running the VMS 5.5-
1 operating system. This was a very lightly loaded system with only this testing and system
operator active. The process was automated using command files to submit all 84 test files, 5 to 20 at
a time, to all three translators as batch jobs. Grouping was used because translation can be
sufficiently time consuming to time-out batch queues. Queues ran sequentially vice concurrently
allowing wall clock time collection with little interference from any other jobs. APL was stress
tested in a similar manner on a lightly loaded Sun SPARC 10 running OS 4.1.3.

Translation catastrophic failure includes abortive failures such as core dumps and symbolic stack
dumps (tracebacks from constraint errors), infinite loops, and cases where all appeared well but no
Ada was generated. Several catastrophic failures occurred while running each translator. The
overall stress testing translation results, including CMS-2 constructs causing failures, are reported
in Table B-l.

Stress testing included the compilation of all translator produced files. (If any code was
marked/bypassed during translation, functionality would be lost and correct execution would not be
possible, but the remainder needed to compile correctly). The volume of generated Ada provided
the perfect opportunity to try many compiles. Overall stress testing compilation results are reported
in Table B-2, the Stress Test Using MTASS Test Suite - Compile Information, included in this
section.

CONCEPTUAL DIFFERENCES AMONG TRANSLATORS

Five conceptual differences surfaced among translators for:

1. controlling the translation process,

2. termination from translation and placement of errors,

3. construction of packages,

4. providing a utility package that contains type and function declarations, and

5. organizing the translators' generated Ada code into files.

Each will be discussed.

Controlling The Translation Process

APL provides switches, TRADA provides a script file, and CCCC provides no control over the
resultant Ada code. Control over the format and content, such as upper-lower case and indenting of
the Ada code is desirable.

B-2

Termination and Reporting Errors

CCCC and APL report some classes of errors interactively during translation, place other classes
of errors into the generated Ada code inside comments, and always attempt to complete the
translation process regardless of errors. TRADA places some classes of errors into its summary file,
some classes of errors into the generated Ada code inside of comments, and depending on the real or
perceived errors will quit translation as opposed to generating bad Ada. TRADA generated Ada for
only 54 of the 84 QA files which is shown at the end of Table B-2.

Construction of Packages

APL produces one package specification and one package body per translation. CCCC and
TRADA produce multiple specifications and bodies.

Providing Utility Package

TRADA generates all required Ada from its CMS-2 input, but both APL and CCCC, as part of
the translator installation, provide canned Ada packages called BASIC_ DEFNs and PREDEFINEDs
which contain some commonly used types and functions. This eliminates the requirement for APL
and CCCC translators to generate these. Since their generated Ada might use these types and
functions, the predefmeds must be initially compiled into an Ada library before any other APL or
CCCC generated code is compiled.

Creating Files

CCCC puts all generated Ada into one big file, APL puts all Ada into one specification and one
body file, and TRADA generates multiple files to accommodate multiple package specifications and
bodies, and provides a compilation order in a summary file. TRADA's results were deemed to
accommodate changes most easily, and be more amenable to library based configuration
management.

BENEFITS OF STRESS TESTING

Stress Testing was of mutual benefit to translator developers and ONR/ NRaD. When a
catastrophic failure occurred the developer was given supporting CMS-2 source to reproduce and
correct the problem. Stress tests provided QA for the developers who, in turn, resubmitted their
enhanced products for evaluation. After delivery of a corrected translator, all 84 QA files were input
from the beginning to locate failures (regressions) of tests that previously passed. Translator
corrections benefited ONR/ NRaD, and any future user, by improving a translator's probability of
completing its Ada generation, and generating better code in some cases. Results shown in all stress
test tables, Tables B-l through B-3 are based on the final corrected translator revision provided by
the developer.

B-3

EVALUATION OF TRANSLATION RESULTS

Refer to Table B-l, Stress Testing Using MTASS Test Suite - Translation Information.

The columns titled Test Description, User Handbook Section, and File Name are self-
explanatory, e.g. Name (2nd page, 2nd row of table) is defined in MTASS CMS-2 User Handbook
section 3.2.4, and tested in file 070QA541. Some files such as 070QA2 test multiple constructs
(numeric expression, boolean expression, and others), and appear several places in the checklist.
N/A means a specific file is not available to test the construct, but the construct is probably tested
non-specifically in other tests. For example, User Handbook section 3.2.1 delimiters are tested
throughout the tests. The Test Controller is not in the CMS-2 User Handbook and is included in the
table only to provide Source Lines of Code (SLOC) information for later use. (SYSDD and QTCON
were INCLUDED in each of the 84 QA files, except for 070DC1 and 070DCER1 which are
standalone direct code tests for the translation process.)

Test Type indicates when the CMS-2 constructs file was (M)anual checking, automated and
(S)elf-checking, contained (B)oth manual and self-checking parts, was tested (N)on-specifically in
other tests, or not tested (-).

Translator Pass, Quit, or Fail and minutes of wall clock time shows all 3 translators' results.
When a translator Passed, Ada code was generated followed by normal termination. When a
translator Quit, some real or perceived unsatisfactory condition caused a user message(s), no Ada
was generated, but termination was normal. When a translator Failed it caused a core dump,
traceback, looped infinitely, or quietly generated no Ada. When a translator had a catastrophic
failure, the CMS-2 code causing the failure was provided to the developer for translator correction
and resubmission to stress testing. A history of failures and corrections can be seen in a sequence
such as P,F,P which indicates that the translation originally passed, translator changes caused a
regressive failure, and, finally, the regression in the translator was corrected. (CMS-2 code in QA
files was never modified to correct translator failures.) The total numbers of unique catastrophic
failures for all 84 QA tests are shown for each translator on page 14 of this table. The unique
failures were: TRADA-6, APL-11, CCCC-10. No trends were apparent for CMS-2 constructs
causing failures across translators. Note that the unique failures are not a summation of the columns
since some files appear several times throughout the table.

The wall clock translation time depended on test file size, CMS-2 constructs encountered, a
translator's design/ implementation, and host computer. We were the only user on the host
computers during the calculation of wall clock time. TRADA and CCCC ran on a dedicated
VAX/VMS so some comparison between these two is reasonable. APL ran on a dedicated Sun/OS
which is faster than the VAX/VMS so time comparison with the other two translators is not
reasonable. In most cases where TRADA finished in one minute, it had reported syntactic or
semantic problems (real or perceived) needing correction, and then quit.

TRADA generated Ada for 54 of the 84 QA files, APL for all 84, and CCCC for 83 of the 84
files. Total translation times for all 84 QA tests are shown on page 14 of the table. The total times
were: TRADA - 6 hr. 22 min., APL - 4 hr. 42 min., CCCC - 31 hr. 59 min. Based on a 54/84 ratio
and adjusting for the 1 minute already spent, we estimate that TRADA could have completed all 84
tests, if they had been in an acceptable condition, in about 9 hr. 30 min. Note that the total times are
not a column summation since some files appear several times throughout the table.

B-4

We do not believe times, nor time differences between translators, are significant since
translators are not used like a compiler which is run repeatedly during project life cycle.
Translation will probably involve only a few iterations of reengineering/ translation and then be
finished.

CMS-2 Source Lines of Code (SLOC) shows the SLOC present in each QA file (before the Test
Controller has been INCLUDED for translation). Throughout stress testing, CMS-2 and Ada SLOC
is counted as straight lines of text as counted by an editor. A text editor provided these numbers
confirmed by the CMS-2 Metrics Generator. For example, the Name test 3.2.4 file 070QA541 is 656
unique SLOC. Table B-l, Stress Testing Using MTASS Test Suite - Translation Information shows
only QA file SLOC without the test controller.

Table B-l, shows the combined TC (1543 SLOC) and QA file's SLOC which in this case would
be 1543 plus 656 for 070QA541 totaling 2199 SLOC actually input to a translator.

About 117,700 totally unique SLOC, as shown in the Table B-l, Stress Testing Using MTASS
Test Suite - Translation Information page 14, were input to each translator. This sums all 84 QA
files, and adds the compool and Test Controller (TC) only once. However, the compool and test
controller were INCLUDED in all but two files which means about 242,600 total CMS-2 SLOC
were input to each translator, as is shown in the compile information table, Table B-2, Stress Testing
Using MTASS Test Suite - Compile Information totals. Considering that data and procedures in
TC are used in different contexts by every QA file, each translator processed 242,600 lines of source
code. Note that total unique SLOC is not a column summation since some files appear several
times throughout the table.

EXAMINATION OF COMPILATION RESULTS

Table B-2 shows results after attempting to compile code generated by each translator for each
QA file with three different Ada compilers - VAX, Sun, and GNAT. This required nine compile
attempts per CMS-2 QA file.

The columns titled Test Description, User Handbook Section, and File Name are the same as
described previously for Table B-l.

Test Number is included in this table only as a cross reference into the stress testing command
files. Test number represents the command file alpha/numeric order. The command files (COM)
were built in QA test alpha/numeric order, (i.e. QA10, QA11 A, QA1 IB), rather than in CMS-2 User
Handbook section numeric order. In User Handbook order a QA test could appear several times.
COM file alpha/numeric order ensured each file was invoked once, and only once.

Compiles VAX/ Sun/ GNAT/ and Ada Source Lines of Code (SLOC) shows compilation results
from the three compilers for each translator for each QA file. Results show (C)orrect compile,
(U)nsuccessful compile, or X when no Ada was generated by a translator, therefore, no compile
attempt was possible. An unsuccessful compile is one containing error messages or informational
messages stating that a constraint error will be raised during execution. (3% of errors were
informational constraint error messages.) For correct compilation remember that all direct code,
non-translatables, and constructs that a translator could not handle appear in comments in a
translator's generated Ada. Therefore, a correct compilation does not give an accurate indication of
future correct execution. Unsuccessful compilation implies one or more compilation errors were

B-5

encountered across a very wide syntax (format) and semantic (meaning) spectrum. The number
following the last slash / is the Ada SLOC generated by the translator, or the word none. The word
none, will be preceded by X/X/X/ in all cases. This table allows comparison of the QA test
including Test Controller CMS-2 SLOC to the Ada SLOC generated by each translator. For
example, the last test in the table, 070QA539D (Table B-2, page 13), shows 2410 CMS-2 SLOC
(1543 Test Controller plus 867 for QA539D itself) resulted in 5002 TRADA SLOC, 4414 APL
SLOC, and 10252 CCCC SLOC. Remember that both the CMS-2 and Ada SLOCs were counted by
editors and include comments and 'white space' (blank lines). Only two tests of the 84, 070DC1 and
070DCER1, did not use/ include TC. Therefore, CMS-2 SLOC numbers for these 2 files are the
same in both the translation and compile tables; 4431 and 274 respectively.

EXAMINATION OF SLOC IN COMPILE INFORMATION TABLE

Table B-2 contains the TOTAL SLOC on page 14. 242.6K total CMS-2 SLOC resulted in
385.0K TRADA SLOC (ignore the second numbers for now), 468.3K APL SLOC, and 923.7K
CCCC SLOC. Based on the ratio that TRADA generated Ada for only 54 of the 84 files, we
estimate that TRADA would have, had all the QA files been acceptable to TRADA, generated the
second number of about 598.9K SLOC for all 84 files. The second numbers for APL, 468.9K, and
CCCC, 925.7K, simply add 1 time their BASIC_DEFNS and PREDEFINEDs SLOCs, respectively,
considering them as part of their overall Ada. This addition is insignificant in both cases.

The Ada SLOCs can be used as a basic indicator of code expansion from the CMS-2, and a
comparitor among translators. Total SLOCs show that a project may experience an Ada to CMS-2
expansion ratio as high as 4:1 after translating non-reengineered CMS-2. This depends on the
translator selected and the CMS-2 constructs. One must consider that the Ada file(s) also contain
blank lines for readability (white space), and may contain non-translatables bracketed in comments
and error messages. White space is about: TRADA -10%, APL - 6%, and CCCC - 4%. The
original CMS-2 white space was about 3%. Ada reengineering of the non-translatables may result in
a size decrease. Removal of error message lines will decrease SLOC. Some error message bloating
can be expected in APL and CCCC since most of their error messages appear as Ada comments,
whereas, TRADA places many error messages in its summary file. Considering all the above, a'
project's Ada to CMS-2 expansion ratio will likely be around 2:1. Reengineering the Ada can'
significantly reduce this ratio. Comparing Ada SLOCs across translators, either by QA file or by
totals, shows the code each translator perceived as necessary to solve the problem. Note that total
SLOC numbers are not a column summation since some files appear several times throughout the
table.

EXPLANATION OF ADA COMPILATIONS

Now continue referring to page 14 of Table B-2. These results are based on QA file translations
produced by final translator revisions. Correct compilation percentages are shown for each
translator for VAX, Sun, and GNAT compilers, and are discussed in the following three paragraphs.
Using multiple compilers showed that when a translator's generated Ada compiled with one
compiler, it was over 90% probable to compile correctly, with very minor adjustments, with the

B-6

other two compilers. These minor adjustments are mentioned in the next three paragraphs, and are
discussed in detail in the Reengineer Until Ada Executes Correctly report section, Appendix C.

For TRADA, 24 of the 84 QA files correctly compiled with VAX Ada yielding 29%. But
TRADA quit processing for 30 files, producing Ada for only 54 files. The second number, inside
parentheses, indicates that 44% of the 54 files produced by TRADA compiled with VAX Ada
(24/54). Initially, none of TRADA's 54 files compiled with either Sun or GNAT. Investigation
showed the range defined for floating point single and floating point double types was acceptable to
VAX Ada but not by Sun or GNAT compilers on the Sun SPARC. Changing the range values to
predefined language attributes of Safe_Emax and Max_Digits provided a workaround for a problem
which had guaranteed 100% failure with Sun and GNAT. We believe that this change provided
more reasonable/useful compilation statistics. After this change Sun Ada compiled 24 of 54 files
yielding 29%, and GNAT compiled 22 of 84 files yielding 21%. Generally, the same files compiled
across the 3 compilers.

For APL, 1 of the 84 QA files, 070DCER1, compiled with VAX, Sun, and GNAT yielding 1%
each. APL's low percentage of correct compilations was caused by a high number of syntax errors
and extraneous characters appearing in its generated Ada.

For CCCC, 14 of the 84 QA files compiled with VAX yielding 17%. However, the second
number inside parentheses, also 17%, is probably a better indicator since CCCC only generated Ada
code for 83 QA files (14/83 == 17%). Initially, none of CCCC's 83 files compiled for either Sun or
GNAT. Investigation showed dependency on a proprietary DEC math library, math_lib, available
on VAX but not on Sun SPARC. For GNAT substituting the Ada 95
Ada.Numerics.Generic_Elementary_ Functions for math_lib corrected a transportability problem
which guaranteed 100% failure. For Sun substituting the proprietary math library, math, for
mathlib corrected the same transportability problem. We believe these changes provided more
reasonable/ useful compilation statistics. After this change Sun and GNAT both compiled the same
10 of 83 files with 1 exception, yielding 12%.

INVESTIGATION OF COMPILATION ERRORS

Using VAX Ada we looked deeper into the quantity and nature of the syntactic and semantic
compilation errors. This information, discussed in the next four paragraphs, is not in a table.

For TRADA, 1003 errors were produced from the VAX compilation of 54 QA files. (30 files
produced compilation errors). This averages 33 errors per unsuccessful compile (1003/30). The
range was between 1 and 278 errors per compile. About a half dozen syntax errors were reported in
the generated Ada code; the rest were semantic errors.

For APL, 2349 errors were produced from the 83 unsuccessful VAX compilations averaging 28
errors per compilation. The range was between 4 and 69 errors per compilation. A high percentage
of APL's errors, about 2/3, were Ada syntactical errors or illegal characters in the source files.
These syntax errors guaranteed a high percentage of unsuccessful compilations. These will require
either fixing the translator, or reengineering the generated Ada before many of the semantic errors
will be exposed.

B-7

For CCCC, 1713 errors existed over 69 unsuccessful VAX compilations averaging 25 errors per
compilation. The range was from 1 through 178 errors per compile. Less than two percent of errors
reported in CCCC's generated code were syntactic; the rest were semantic errors.

Across all three translators the average was 28 errors per unsuccessful compilation. These were
usually not 28 separate and distinct errors, but probably about 6 different categories of similar errors
meaning that one correction may resolve four or five distinct errors. Due to the nature of compilers,
many corrections have potential to expose the next layer of errors. Several correction passes are
likely required to achieve a correct compilation at this first level. At the next level non-translatables,
bracketed in Ada comments by translators, such as direct code, must be reengineered on either the
CMS-2 or Ada side to reach a correct compilation. Final reengineering will probably be necessary to
achieve execution that is functionally equivalent to execution of the CMS-2. We consider this
observation of multiple level issues very important since considerable time must be spent addressing
each and every translation problem.

PROJECT-CONTRIBUTED LEGACY CMS-2 SAMPLES

In addition to using files from the CMS-2 QA test suite, five projects contributed source code for
translation/compilation research. Results are shown in Table B-3, Translating and Compiling using
Project-Contributed Legacy CMS-2 Source Code. This table combines translation and compilation
results, and also shows adjustments made to source code before translation, and resultant errors.
Each project table entry contains translation pass, quit or catastrophic failure; minutes of wall clock
time; Ada compiler results (VAX Ada/Sun Ada/GNAT); Ada SLOC; and descriptive comments.

B-8

c
o
CO

E

e
o

<->
a
CO c
CO

2
3

CO
4-1
CO «

CO
CO
<

O)
c
CO
3
O) c
*i
CO
©

co
CO
© fa.

CO

00
©
n
CO

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)*

co
•<*
to

C
C

C
C
 P

as
s,

Q

ui
t,

or
 F

ai
l &

m

in
.

o
f w

al
l

cl
oc

k
tim

e

<:
z

A
P

L
P

as
s,

Q

ui
t,

or
 F

ai
l

&
 m

in
. o

f
w

al
l

cl
oc

k
tim

e <:
Z

TR
A

D
A

 P
as

s,

Q
ui

t,
or

 F
ai

l &

m
in

.
of

 w
al

l
cl

oc
k

tim
e

Z

Te
st

Ty

pe

Z Z Z Z z

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

z
o
o
O
«5

Q
Q
CO
>
CO

<;
z z

<:
z z z

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n

<:
z CO

CM

CM

CO

c\i
oi
CO

CM

CM

CM"
CO

CO

CM

c\i
CO

c o
+3
Q.
*C
u
CO
0
O
*»
CO
©
1-

l_
©
Ö
+-» c
o
Ü
♦^
(0
©
1-

V)
©

"E
©
Q b

(0

b
"to
E
o
©
Q

b
"S
Ü
o

w

b
ro
E
ü
©

CO
X
©
X

2w 5" ©
"fc S A

O)
c
'E
CO
©

'5

o
♦^
_co
w
c
CO
u *-»
O
!c
Q.
O
i_ *-»
CO
CO *-»
CO

o

■a
©
CO
co
CO
a.

■o
©
'S
£
o
o
L-
o

JB
co
c
CO

T3
©

"5

©

CO
_ü

Q.
Q.
CO

©
T3
O
Ü
CO

<
i

c
g

ro
co
c
CO u.

■

■D
©
©
£1
E
o
£"°
®l <o co

CO c

C .
o
33 «
CO
C
CO

co

TO
C
'E
CO
©

© a
>
l-
CO
©

©

O
C

©
CO

CO

2
©
o
©

T3
c
g
*-«
CO
c
CO

a

a

co
©
■

CO ©
3 .c c *-»
CO o
E c

"O •a ^ c © u
CO (O ©
O) © .c
c •*-»
^ >« H^-
o
© Ü CO

Ü
«»=

©
Q.
CO

©
CO

T3
JS
CO

Ü2

SZ u

©
CO

©
sz
o

"co
3

is
CO

E
xz c c o

o o CO o =J
Z CD 2> z <

©

co
©
c

'co
k-

CO

co

Ü
O
_J
CO

«

co S z co

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

CO
io
CD

O)
o
CO
CNJ

CO
in
CD

co
lO
CD

in
o
in

CM

B. *^ lfc. ♦*

ü o °-g

8äE°

CO

LL

00
CN,

0.
LL a. Ü. a.

C
o

n
E

r

m u. o o
« i- «J £ o
Q- o £ o p

n1 tf E 1 - 0- 0. a. a. a.

0

«
a
C
«
i-

i

0)
a
3

•T *8 —
n=n o
« IB > E

£c§EÜ

a O O a O

(0
*J
(0
01
1-

CO Q.
2 s 2 CO 2 2 2 2 CO CO 2 2 CO 2 2

(0

s
O)

JC
CO
D
o»
c

e>
o
1-
«
CO
0)

(0

■
m
© s
a
1-

o P H
C2

Z

T
in
< a
o
O

Z

o

a
o
o

z
<;
Z

<;
z 2

CO
< a
o
o

CO
< a
o
o

2 2

CM
CO
lO
< a
o
o

z
<;
2

(0 o
S £ «= ü 1 o
CO X ©
< i_ CO
H •
S3

CO
CM
CO

CM

co"
CM

CO

in
CM

CO

If)
CM

CO

CD
c\i
CO

c\i
CO

CM'

CO
c\i
co"

CNJ

N-'

CM

CO

CO

r*~"
CM"

CO

CM

CM

CO

CO

CM

CO

CM

CO

if)

CM

CO

c
o

"E
o
to
a>
Q
<->
CO
0)
1- 0)

a)
_i

a>
E
ro
Z

4~*

_l

a)
E
ro
Z

CO

<
o
ro

E

ro
CO
H

'c

J2
ro
D

*-•
c
ro
to
c
o
Ü

c
CD *-»
(/>
c
o
O

•guT
a> Q

18 9.

c
ro
«5
c
o
O

ro *-«
u
O

c
ro
to
c
o
Ü

ro
E
"o
CO
Q

c
ro •^^
co
c
o
O

ro
E
o
0)

"O
ro
X
a>

c
ro
w
c
o
O
L-
0)
o
ro
h—
ro

O

c
CO *—'
CO
c
o o
CO

ro
CO

c
ro
CO
c
o
Ü
c
ro
CD

o
o

m

p
2
UJ

O
Ü
CO
a> *-»
o
2

o
I

m

CO
i

C
o
(0
E

c
o

JO
tO

©

3
(0

to
©
H
CO
(0
<

o>

to

(0
©
I-
(0
to
82

CO

m
©

CB
I-

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

1^
CM
CO

in
o
CM

CO
00
CO
CO

o
T-

o o
w
o
CM

in

o
CM

CO
in

»3-
m in

C
C

C
C
 P

as
s,

Q

ui
t,

or
 F

ai
l &

m

in
.

of
 w

al
l

cl
oc

k
tim

e

co

QL

Li."

in
CM

a. a.

o
CM

a.

CM
CM

a.
o
CM

a.

in
CM

ÜL

to"
CM,

a.

c*\T
CM

5?
CM

a.
u."

CM,

a.
LL."

A
P

L
P

as
s,

Q

ui
t,

or
 F

ai
l

&
 m

in
. o

f
w

al
l c

lo
ck

tim

e CM

a. a.
LL."

a. D. a.
LL

a.
LL

a. a.
LL

a.
LL

TR
A

D
A
 P

as
s,

Q

ui
t,

or
 F

ai
l &

m

in
. o

f w
al

l
cl

oc
k

tim
e

in
a.
Li."

a
3,
a.

52-
QL a.

lO

a. G a
CO

0. O a

Te
st

Ty

pe

CO CO CO CO CO CO CO z i 1 1 CO CO CO CO

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

<
a
o
o

CM < a o
O

<
O o
CO

CO

o

o

CM
CO

o

o

LL

CO

o
O

CM <
a o
1^
o

<:
Z

<:
z z

<:
z

2 a
o
o

CO

< a
o
r--
o

CO
in < a
o
1^
o

oo
in < a
o
o

M
TA

S
S

 C
M

S
-2

U

se
r

H
an

db
oo

k
S

ec
tio

n

00
CM

CO

00
CM

CO

CO
CM
CO

CO

CM

CO

CO

CM

CO

CM

00
CM

CO

CM

CO

CM

CO

CO

CO

CM'

CO

CO

CM"

CO

in
CO

CM

CO

CM

CO

o
T—

CM

co
CM

co

c
o
*3 a.
°c o
to
© a
to
©
1-

c
o

'to
w
£ a.
X

UJ
,o

©
E
z

c
o

"to
CO

Q.

ü UJ

Is

c
o

'to
CO

£
X

UJ
c
CO
©

o
o

CO

c
o

'co
CO

£
a.
X

UJ

c
g

*-»
CO

© a:

c
o

'co
CO

£
a.
X

UJ
to
n
CO

CO

c
o

'to
CO

£ a.
X

LU

©
'S
£
CO
x:
Ü

c
o

'co
CO

£
Q.
X

LU
O)

CO
*-»
CD

c
o

'co
CO

£
Q.
X

UJ

"co
c
o

'■+-*

TJ
C o
Ü

©
Q. >»

©
Q.
E

CO

"5
©
G
©
a.

£"

«

SCOT©

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

CO
CD <*

CM
CO
CO

o
O)
CO

CO
CM CO o

CO

CO
in

f

u. **" ^_ «->
Ü o °-g

8<§E«

CD

a. 0.

CN-

DL

CN

D.

CD

a.

m
T—

D.

co"

a.
LL

c
o
n
E
■_

a
c

c
o

n
co
c
a
i_
1-

■

3

c» ,_ e «
£ o c = E
« . C ffl 5

-1 3 _ *- Ü

< u. u

u."
a

CO

Q_ CL 0.
3
a.

«T °8 _
CO = « «I
B H 2 E

< ♦* £ °
a 3 c o
H a c

2
a. a QL a. a. o O £L

(0
0)
e
t-

0) Q.
Z z z S z z Z s CO CO CO 2 CO CO 1

(0

5
O)
c
0)

(0

2 w « - s *
CD O 3

EOTW

^ < CO
CO P H

Z
<;
z z

CO

5! a
o
o

z
<:
z

<;
z

in
O)
< a
o
r--
o

o
< o
O

Q
< o
o

<
CM
CO
< a
o
1^
o

m
CM
CO
< o
o
o

CO
CO
< a
o
o

CO
< a
o
h-
o

z

1—
(0
0}
a>

(0

t
CD

CO
i-

<>3
(0 o

ü ? o
ty> « o
«I«
< ■_ (0
P 0
5 CO

to
CO

CM

CO

co

co
co
co

CO

CO CO co'

CO

CO

1-
•<*
CO

m

CO

in
M-'
CO

CO

CO

CD

CO
■*'

CO

00

CO CO

c
o
Q.
t-
o
(0
CD a
CO
CD

c
LU

E
CD

CO *

™ E

o &
CO

w
c
(V
E
E
o
Ü

o

s:
CO
O

CO

o
o
m
0)

•D
CO
CD
X

co
o

D
CO
c
g

O

73
cu
D
X
CD

■D
C

E
£
CO
>.

CO

ü
CD
D
O)
3
n
cu
a

CD

Si
£ TO
5 CO

< CD
CO

13
CD
Q
CO

CO
3
cr

LU

T5
CD
O
c
o
"3
•»■^

w
Si
3

CO

T5
CD
o
CD

■o
o

c
CO +*
(0 c
o
Ü

Ü
CD
Q
CD
>
3
O
CD
X

LU

i

Iß
■
c
o
*3
CO

E ■_

a
c

c
o

«
co
c
CO

3
(0
co
0)
I-
to
(0
<

c
co

CD
C
*»
CO
0)
H
co
co
CD

(0

m
©
ja n
I-

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

O
CO
CO co 38

0

28
09

o
CM

CO
CO
CM

O CO CO
in
CO

CO

CO
CM
CO

o>
to

CO
o

C
C

C
C
 P

as
s,

Q

ui
t,

o
r

Fa
il

&

m
in

.
o

f w
al

l
cl

oc
k

tim
e

CM

0-

CM

0_

^v CO in
CM

a. a.

CD

a.
CM

a.

CO
CM

a.

in
CM

a.

CO

a.
LL
Q."

CO

a.

in

a.

co

a.

A
P

L
P

as
s,

Q

ui
t,

o
r

Fa
il

&
 m

in
.

of
 w

al
l

cl
oc

k
tim

e

3
£L D. 0. 0-

a.
LL

0. Q.
CL

LL
a.
LL LL

a.
0.
LL

0."
a. a.

TR
A

D
A

 P
as

s,

Q
ui

t,
or

 F
ai

l &

m
in

.
of

 w
al

l
cl

oc
k

tim
e

co

a.
CO

0.

CO ^

üT a O a
LL

co

a. o a a
5,
a.

2^
a.

co

a.
co,

a.

Te
st

Ty

pe

CO CO CO CO CO CO CO CO CO CO S 2 2 2 Z

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

Q
<
o
r--
o

Q
o
h- o

T- O
1- CM
Q % LL O
O O
o o

CM
< a
o
h-
o

CO
CO
<
O o
o

CO
co
< a
o
O

o

o
o
r-
o

Q

a
o
o

a
o
r--
o

<
CO

a
o
o

CQ
co

a
o
o

<

a
o
^- o

CD
•«a-

a
o
o

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n o

CO

o

CO

O T-

CO CO

CM

■<*

CO

CM

CO

CO

CO CO co co

in

CO

to

CO

CD

co

CO

co CO

c
o
Q.

"E
U
CO
CD o

<->
CO
CD
1-

ö a>
Q

c
Ö
o
Q.

"5
a>
D
<D

CO

1
_i

Ü

a
0)

o
5

Ü
CD
Q
c
o

"co
o
8>
0.
a>

c
CO

ü
CD a
en
c

'(/)
(/>
CO
a.
Q) *-» a)
E
CO

CO
a.

73
<D a
aj
a>
CD
Q

I
Ü
1-

CO o

73
CD
a

Q.
CO

"5
a>
Q
<D
■D
o
:>

u
CO

en
i

to

CO
I

c
o

o

CO
o
»-
CO
CO
<

O) c
«9

a c
CO
CD

CO
CO

£
(0

m
«
n
CO
I-

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

CO
CM

o £
CO
o
CO
CO

CM
O)

CO
in
03

o
CO
CO
T—

CM

CO

CO

05
CM
CO

»Til c
Q. ■*- ^ **

Ü O °-g
^ ♦? c o

8gE»
a. D.

in

a.

in

a.

ST
eg

a.
CO

a.

CM
CM

CL

CM,

CL

CM
CO

0.

CO
CM

a.

So

CL

to" c °>
CO o c = c w w fc « ^

.%* ** —1 3 _ «•- ü
CLO-5 o o
< U. O

o

a. QL a. 0.
3
CL CL 0. 0.

CO

a. CL 0.

co °8 _
co = "5 eu

Q ö • o
< ♦*" c o a 0. 0. a.

in*
r—

CL

LL
a

CD

a. 0-

CM"
T—

a.
U-"

a o

** CD
CO Q.

Z CO 2 2 2 Z CO CO CO co z z CO CO CO z

1" 2 JO o> *- s *

^ < CD
CD P H

z
o
Q
o
o

UJ
Ü
Q
o
o

1-
Q:
UJ o
D
o
o

a:
i-
Q:
o
UJ
a
o
h-
o

Z

CN

o
<
O
u.
o

< o
o
o

CO

< a
o
o

< a
o
o

z
<;
z

03

< a
o
h-
o

CO
< a
o
o

CO
in
< a
o
o

z

<>3
(0 o

O ? o

to I «

S3

iri
CO

CM
CO
CO

C\J
in
CO

CM
iri
CO

CM
in
CO

CO
in
CO

CO
in
CO

CM
CO
in
CO

CM
CO
iri
CO

•<*
CO
iri
CO

in
CO
in
co'

in
CO

in
iri
CO

c
o
<3
Q.

u
CO
CD
a
*-«
CO
CD
1-

c
O)
'to
a)
D
co
TO
D
E
B
w
>.

00

.*:
ü
o
03
a)

■D
o
o
♦-•
Ü

b
...

ö
CD
D
CD

CD

73
CD
Q
X3
CD
U.

Ü
CD
D
CD

XJ
CD
1-

1
CD

Li

ö
CD
a
CD
CD

<■

E

75
CD
D
CD
X)
CD
1-

1
XI

CO

CD
a

CD
> o

1
■D
CD
LL

CD

'■5
o

T3
CD
Q
E
CD

u>
e
a
75
c u.
CD
'S
UJ

I
03

s 2

c
o
53
CO
E ■_

£ c
c
o
a
CO c
CO

0)

"5
(0
*J
CO
0)
I-
to
CO
<

c
0)
D
o>
c
55
<0
0)
H
(Q
(0

(0

m
a>

CO

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

o m
lO

o
CM

CO

C3J

v—
O

CO
in
CO en

CO
in
CO o o

C
C

C
C

 P
as

s,

Q
ui

t,
or

 F
ai

l
&

m

in
.

of
 w

al
l

cl
oc

k
tim

e

a.
CM

0.

CO
CM

CL

CO

Q. Q. a.
CM,

a.
LL

0-

CO

a.
LL

co

a.
LL

A
P

L
P

as
s,

Q

ui
t,

or

Fa
il

&
 m

in
.

of
 w

al
l

cl
oc

k
tim

e

CM

Q.

CO

a.
LL a.

CO

Q.

LL
0. a. Q. a. a. a.

TR
A

D
A

 P
as

s,

Q
ui

t,
or

 F
ai

l &

m
in

.
of

 w
al

l
cl

oc
k

tim
e

Q.
LL a a Q_

LL a a a O O

Te
st

Ty

pe

Z CO 1 i i CO CO CO z CO co CO CO 1 CO CO

Fi
le

 N
am

e
fr

om

M
TA

S
S

 C
M

S
-2

Te

st
 S

ui
te

<:
z

in
< a o
1^ o

Z z
<;
z

CM

< a o
1^ o

CO

< a o
o

O
CD
< a o
o

<:
z

LO

< a o
1^ o

00
< a o
i^ o

CD
<
O o
o

00
< a o
O

z

CO

< a o
1^ o

co

<
O o
O

M
TA

S
S

 C
M

S
-2

U

se
r

H
an

db
oo

k
S

ec
tio

n

CD
lO
CO

lO

CO
lO

CO

CM

iri
CO

CO
1^
iri
CO

CO

lO

CO

iri
CO

iri
CO

o
iri
CO

lO

CO

CM

LO

CO

CO

iri
CO

CM

CO

iri
CO

tri
CO

in

iri
CO

CO

in
CO

c
o
^5
Q.

"C
ü
CO
CD
Q
*■»
CO
CD
1-

"5
CD
Q
<D

.Q
CO

'k—

CO
>

CO

£
3
T3

CO
U
O
h-
D.

Ü
a)
Q
X
111
a
z
a.

O o
m
.c u
5

CO

W
1-
o_

x: u **

CO
LU
_J
CD

O
Q a.

73
0)
G

&
CD

E
CO

CO
Q.

Ö
CD
a
>>

<D >
o

•4-» c
CD

E

TO
CO

CO

CO
a

Ü
CD
Q

CD
O) c
CO

o
<D
Q
*-»
CO

E
o
Li-

73
CD
Q
a>
iZ
TO

CO
■o
c
ro
to
c o
z

73
CD
Q
a>
LL

"S
CO
T3 c
CO

CO

ö
<D
Q

E
£
c
'^ *-»
CO

o
CD
Q
*J

w

3
a.
c

73
CD
Q
*-«
.52
(/>
O.

o

i

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

O

co

o
CO

■<<■

o
co

CO
CO
■«a-

CM

CD
CO

o
00
00

T-

00
1

«- *r <fc- *•
o o °-g

8c§Eü

CO

Q.*

5"
co

u.
Q."

CO

0.
CM

a. Q.

CM

a.

in
T-

a.

c
o
n
E
£ c
c
o

«
c
2
1-

I

e
3

of ,_ cf *
£ O e = E
&■ ä oj, 5 ^
-J 3 _ «*■ Ü

CLO-5 ° £
< u. o

O

a.

O
CN_

0.
s
a. a. a. a. a.

u."

«r °8 —
X" « i E U.U. *£

0.

5-"

0.

co
a. O D_ a. Q.

CO

«0

CO
CO

2
O)

_c
(0
D
o

CO

(0 Q. z z z Z z Z 1 CO CO CO z CO z CO CO z CO

E w
2 w o>
*■ 5 S o o 3

z < o>
«Pl-

<;
z

<;
z z z

<:
z z z

<
<
a
o
h-
o

<
<
a
o
o

CM

a
o
O

z

CM

IO
<
O
o
t^-
o

z

o
<
o
o

o

<
O
o
h-
o

z

<
CM
00
<
a
o
O

0)
0)

£
CO

I

m
e
.o
«

<?3
CO o

ü ? ©
co «s o
co I a>

S3

CO

CO

CM

CD

CO

csi
CD

CO

CM

oi
CD

CO

co

c\i
CD

CO

CM
CD

co

CM

csi
CD

co

CO

CO

CO

CM

CO

CO

CO

CO

CO

CD

CO ro

CM

r-'
co

CM

CO

cd

co'

CM

co'
r-'
co"

CO

co
h-'

CO

c
o
a.
*n o
(0
0)
O

to
0)
»-

E
co

3
•o
a>
o
9
0.
E
£
w >.

CO

c

'co
CD
o
ro
ro
Q
15 o o
_i

.*: o
o
m
.c
o
1
CO
X a>

2£ o
o
m
o
I
CO

E
CD

o
o

CO
.c
Ü

$
CO
a>
XJ
3
O
Q

o
CD

Q

E ro

e
0_
15 o
o
_i

c
O)

'io
a>
D
ro
ro
Q

3
<

73
CD

Q

o
o

CD

S
3
•D
CD
Ü

0.

Ö
CD

Q
A;
o
o

CD
c
o
Ü c
3
u.

Ü
CD

Q
o
o

CO
Ü
8
0-
o
CD
X m

-
CO

Li
X
CD

T3
_c

ro o
o

—i

c
a>

'to
CD

Q

ro
ro
Q
E ro

2
D.
r>
3

CO

E
w
CD

CD
Q.

E

CD
(0

a>
CO

CD
to ro
k_
.c
a.
c
O)
CD
m

CD
CO ro

0L
c
3

CD

VO

03

en

c
o
CO

E ■_
£
c
o
«
CO c
CO

£
3

CO

CO
©

co
CO

s
_c
"35
D
O)

_c
*3
CO
CD
h-
(0
CO

£
CO

m
©

CO
I-

OT co -O O o ■* r-- 00 CM CM CM CO
o CO

00
O)

CM
05 CO 03

S 2 ° -J T~ ■*■ ■sr *— CO CO CD O)
CM

CO CM
CO

CM
CO

CM
CO

-oa

C
C

C
C

 P
as

s
Q

ui
t,

or
 F

ai
l

m
in

.
of

 w
al

cl

oc
k

tim
e

CO 65s
co"

IO IO •* ■<*■ ■<fr 1^ t^ 00 O) CO r^- CM IO CM CM
T— T— T— T"" T- T^ T~ ■<fr ^r- CM T— ^~

Q. 0. Q. Q. D. 0. 0. a. a. a. a. a.
LL

a. Q_

LL

a.
LL

P
as

s,

it,
 o

r
&

m
in

.
w

al
l

kt
im

e

^^
CM CM*

^-s ^^ CM *-^ y-*v ^* ^— T™ T~ ^^ T— CM CO T— CO CO
Q. —' N-" %-• Q. Q. ^_, "-" ^-* Q. *—' S>M^

_J 3 _ *- o 0_ 0. n n a. n a. f.l n n CL
txo« o o LLT LL LL LL

< u. o

co °8 —

P
as

Fa

il
Fw

al

tim
e

CM CM CM T— <r- T- CO T~ V ^^

TR
A

D
A

Q

ui
t,

or

m
in

. o

cl
oc

k '—' ■^m* >*^ **** >—^ "-^ ^-^ N~'' >—>^ N—*' ■"-^

a. O D. 0. o o o QL QL a a a Ü a Ü

*-> ©
CO IX CO CO CO CO CO CO CO CO CO CO CO 1 CO CO CO CO
l-H

E«
2 co CD

•fc S ä
CD
CM

o
CM

<
co

CD
CO

O
CO ■«fr ■<*

CQ

< a
o
o

CO
CO

CO
CO •* CO o

< o
o
r-
o

CO CO

»o,5 E «, w
i co ^

00 00 oo CO CO < < <r IO < ^: < < <.
< < < < < o o a

o
< o a o o

O O O o O o o a o 7" o o o

eN
i

TA
S

Te
s o o o o o c- !>- l>» o (^ 1»- h- r^-

o o o o O
o o o 1^

o
o o o o

ES

«?S
CO o

A
S

S
 C

M

r
H

an
db

S

ec
tio

n

co

co

CM

■«*

CO

CO

CO

CO

CO

IO
CO

1^

CO

CM

IO
CO

1^

CO

CO

CO

1^

CO

CM

CO

CO

r^
CO

co

CO

CO

CO

1^

CO

O)
CO

CO

o

CO

CO
l_ w s3

©
c
o
53

CO ^—
©

CO
©
co ©

2
JZ "co

CD

Ü ©
(0

a.
o
CO
©

j=

O

CO
k_

JZ
Q.

O

CO

2
JZ

o

a.

To
Ü
Ü

o
Ü
o
k-
D.

JZ
Ü

CO

CO
1_
SI
0-

"03 ^ u
©
CO
CO

©
CO
CO
l»
JZ
a. ^

(0 ©

o
CD o 2

a.
T3
.© X

LU

o o
CQ

JZ a.
©
E

Ü
o

©
1- o.

E
X
©
T3 E

©

I_
©
CO

Q. ©
a. w

3 2
Q LU

CO
a.
o

ZJ
co
©

CO

o
CO C *5 D CO JZ

a.
a. 0. > CO 01 LL

I
CQ

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

co
o

in
o
CM

CO

o
CN

00
m
CO
CO

in
o
CM

o

t

D- 7* H- **
Ü o °-g

8aE°
0.

in
CM

0. a. 0.

in
CM

0. £L

in

a.

c
o
CO

E
£
c

si's» « L. p: o a,

—J <J c ss «s

ig-l
Q. QL

LL

CO

a.
CO,

0-
CO

Q_ 0.
LL LL

a.
LL

c
o
m
m
c
CO

■

to *8 _
CO = "= ©
« n S E

Q ° • o
< *J c o
K3CU
K- a c

Q. o O a O

T—

O a
CO

a. O

3
CO
*J
CO
©
I-

co

*-< 0)
co a. CO CO S s 2 2 CO CO CO 1 1 1 1 1 1

CO

5
O)
c
CO

CO
0)

2 jo ©
- S ä
© o 3

5coS
^ < ©
©pi-
ES

CO
CM

< a
o
o

CM

<
O
o
i^-
o

in
< a
o
o

m
O)
< a
o
o

CO
O)
<
O
o
N-
O

in
O)
< a
o
h-
o

CM
< a
o
o

in
T-

< a
o
h-
o

CM
< o
o
o

<;
2

<:
2 2

<;
2

co
CO

£
CO

■
m
©

CO

CO o

ü ? o
CO « o
CO I ©
< i. CO

S3

CO

h-'

CO

CM

CO

CO

CO

CO

CO

CM

CO
T—

CO

CO

CO

CO
V"

CO

N-'

CO

CO
T—

CO

1^

CO

T—

CO

CO

CO

CO

m

CO

CO

CO

CO

CO

CM
CO

CO

CO

CO

CO

CO

1^-'

CO

CO

CO

r-'
CO

in
co'

CO

r-'
CO

CO
CO

CO
h-'
CO

c
o
**
a
k.
o
CO
0
Q
«-•
CO
©

©
CO
CO

xz
a.
Ü
©
X

LU

©
CO

xz

xz
CO

©
CO
CO

xz
CL
>>
CO
O-
CO

D

©
CO
CO
k.
.e
0.
D-
CO

&

©
(0
CO
k_
xz
Q.
© o

1-

©
CO
CO
x:
a.
© u

l-
T3
C

UJ

©
CO
CO u.

XZ
a.
D.
CO

CO

©
CO
CO

lz
CL

o
ro
0.

©
(0
2
xz
CL
c
© a.
O

©
U)
CO
lz
a.
a>
CO
o
ü

©
CO
CO
xz
CL
a>

T3
c

LU

©
CO
co
xz
CL

Q
u.
LU
O

©
CO
CO

xz
CL

o

X
Ü

©
CO
co
xz
Q.

CO

o
0-
_l
LL

00
■

ca

c
o
n
E
£ c
c
o
«
(0 c a

3
CO

(0
«I
I-
(0
CO

2
O) c
CO
3

O) c
*3
(0
0)
I-
(0
(0

CO

m
a)

(0

C
M

S
-2

Li
ne

s
o

f
C

od
e

(S
LO

C
)

•st"

O
CO
ID
CD CM

co
in
CO

LO
r-.
o
CM

lO

o
CN

o
CN

O)
CM
CO

C
C

C
C
 P

as
s,

Q

ui
t,

or
 F

ai
l &

m

in
.

of
 w

al
l

cl
oc

k
tim

e

CO

LL
a.

co"

a. a.
CN,

0.

in"
CNJ,

a.

ID
CN,

a.

lO
CNJ,

a
LL

A
P

L
P

as
s,

Q

ui
t,

or
 F

ai
l

&
 m

in
. o

f
w

al
l c

lo
ck

tim

e JO

a.
CN,

a. a. a. o_
LL

a.
LL

5
CL
LL

a.

TR
A

D
A

 P
as

s,

Q
ui

t,
or

 F
ai

l &

m
in

. o
f w

al
l

cl
oc

k
tim

e

O a D. O a a a o

Te
st

Ty

pe

1 CO CD CO z co i 1 1 CO CO CO CO

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

Z

00

< a
o

O

CO
< a
o
r^
o

en
< a
o
r^
o

<:
z

CO
<
O
o
r-
o

<:
z z z

5! a
o

o

5! o
o
O

2 a
o
o

5 o
o
o

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n CO

CO

CO

CO

CO

CO

CO

CD

CO

CO

o

CD

CO

co

CO

co

CO

CN

CO
T—

CO

co

1^-

cd

co

co

cö

co
h-"
CO

CN

CO

CO

cö

c
o
*5
Q.

°E
Ü
CO
CD
Q

CO
CD
1-

CD
(0
£5
SI
a.
CO
O
a.
l-
UJ
CO

CD

_c

0_
CO

o +-«
•I".
3
Q.
"3
O

CD
CO
CO

a.
*-»
O-
C

CD
CO
CO

.c
a.
CD
T3
O
Ü
c

UJ

CD
CO
CO
i_

SZ
a.
CD

T3
O
Ü
CD a

c
CO
o

CO
■•-»
CO

E
o

LL

CD
co
CO
t_
sz
a.
3
Z

CD
CO
CO
Urn
sz
a.
X

LU

CD
CO
ZJ
CO

O

CD
CO
Z5
CO

Ü
CD
CO

LU

CD
CO
rj
CO

O
T3
C

LL

DQ

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

co
o
to

m
o

T—
•«fr
00

00 CM CD
CO

00
O

00 o CD
O CN

00

M CN CM TT TT ^r ■<fr ■f •* CO CN

« * 8 "5 I c
D- *T «*- ** 00 m o in CD CM CD CD ^ CO

CO
Ü o °-g
8 ".2

JJ, CN, CO in ID J, m in CO "^ CM

CN

1

Q. a. a. Q_ a. 0. a 0. 0. u.
LL

a.

c
o 8£ o|
CO

c
c
o

" L. (j J2 o> T-

LL."

CO

0-
LL

00

a.
CN

a.
00

0.

o

0.

o ^-

0.

00,

a. Q_

CO* °8 —
*- 2 = w ®
"5 J? « § E ,-^ ^ ^ ^ ^^ ^^ ^^ _ /-*\

^. . *•- ^" CD "^ T~ CD CD CO CD CM m <^*s c
2
»- 95c8

£<§E°
D. a 0.

CM

a. a. 0. a. 0. a.
0.
LL O

•
0)

3
CO *» 0) *rf CO Q.
CO
0)
H tf CO CO CO CO CO co CO CO CO CO CO

ro
(0

2
S 1"

© ü 3
CO CM

< a
CM < CO Ü < CO ü CD

<
O
o

< a o
< < <

CD

<
CD
X—

<
CO T-

<
CO
in
< to o

o
U u o a o O o O

h~ 1^ o o o o O o r^- o
c
7

o o o o O o 1^-
O

1^- o o
o

CO
©

CO CM £ CN
CO • o CM o (0 o CM w

ü ? o
(0 « "
CO X ©
< t. to
£ 2

CM CN CM CN CN CM CN CM
to

■
CD
o

od

CO

CO
1

CM

CM
i

CM

00
CO

CM

CM

CD

CO

CN
i

CN

CO

CO

CN
i

CN*

00
CO

1 CM
<r- CM

c\i c\i
00 CO
CO CO

CN
i

CN

CO

CO

CM
i

CM

CO

CO

CN
1

CM

CD

CO

CN
i

CN
00
CO

n
S3 00

CO
1-

c c o — o
CO «_*

Q. O u
c

o
CO

c
o

3
LL

0 o TJ
Q c CO

CO
3

LL
C

ic=
a>

■o
©

©
1-

i—
0)
CO
r) D. co

O

o
cs

I
CQ

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

CO

CM
CM
CO

lO
CM
o>

o> in
TO

in
O)
in

o co
o
CO

O)

CO

o
CD
O
CM

CO in
o>

CO

-«a _
(0 _ = 0)

o =» E °
a.

Oi

a.

CO

a.

CO

a. a.

m
T—

a. Q. 0.

CM
CM

a. a. Q.

co

a

c
_o
OS

E
l_

(0 u. o o

0- o £ o E
n* Ä E = 5! 0. 0.

3
a. a.

3
a.

3
a.
u."

3
Q.

3
a.
LL."

s
a.
u."

3
0.

3
a. QL a.

c
o
«
0)
C
2
1-

en = 75 *
J? « i E

Q ° . O
5
a. 0. a. O O a

co

a. - a a
CO

a.
co

a.
5^
Q.

CO

a.

3
CO
+*
0)
0)
i-
co
CO

2
TO
c
w
3
O)
c
*5
(0
O

*< 0)
(0 Q.

CO CO CO CO CO CO CO CO CO CO CO CO CO

2 co a)

® o .2
£tow

ES

<
CO
CO
w
< a
o
f-
o

m
CO
CO
lO

< a
o
o

ü
CO
CO
in
< a
o
O

a
co
CO
in
<
O
o
r*-
o

co
co
m
< a
o
o

CM
CO
in
< a
o
o

co

5! a
o
O

Ü.
CM
00
W
< a
LL

O

CM
IX.
CM
00
m
< a
u.
o

O)
co
m
< a
o
o

<

co
in
< a
o
o

m
O)
CO
in
< a
o
r- o

o
o>
co
in
< a
o
r^
o

1-
(0
0)
2 •**

CO

■
m

CO o
25 5
CO « o
co I a>

S3

CM
CM

i

CM

CO

CO

CM
CM

i ^*
CM

CO

CO

CM
CM

i

CM

CO

CO

CM
CM

v-

CM

CO

co

CM

CM

00
co

CM
CM

t

CM

CO

co

CM
CM

i

CM

00
co

CM
CM

i

CM

CO

CO

CM
CM

■r-

CM

CO

CO

CM
CM

CM

CO

CO

CM
CM

i

CM

CO

co

CM
CM

t

CM

00
co

CM
CM

CM

co
co

c
♦5 a.
u
0)
0J
Q

0)
V

"8 <-> S"
s g s «i £ i
2 i § a. u_ 3

3
CO

« o
t-
co
CO
<

O) c
CO
3
D)

CO
CD
I-
co
CO s

CO

m

Si
re

C
M

S
-2

Li
ne

s
of

C

od
e

(S
LO

C
)

1^
CD
oo

C
C

C
C
 P

as
s,

Q

ui
t,

or
 F

ai
l

&

m
in

.
of

 w
ai

l
cl

oc
k

tim
e

oo
T—

0.

10
 U

N
IQ

U
E

F
A

IL
U

R
E

S

CO
Dd
D
O
X

n

co
z

A
P

L
 P

as
s,

Q

ui
t,

o
r

Fa
ll

&
 m

in
.

of

w
al

l
cl

oc
k

tim
e

Q.
11
 U

N
IQ

U
E

F
A

IL
U

R
E

S

CO
a:
D
O
I
o

CO z
CM

TR
A

D
A
 P

as
s,

Q

ui
t,

or
 F

ai
l &

m

in
.

of
 w

al
l

cl
oc

k
tim

e

a.

6
U

N
IQ

U
E

F
A

IL
U

R
E

S

CO
en

O
I
CO
o 22

 M
IN

S
.
/

09
 H

O
U

R
S
 3

0
M

IN
S

.

Te
st

Ty

pe

CO

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te
 D

a>
CO
IT)
<
O
o
!•»
O

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n CM

CN
i

CN
00
co

c
o
Q.
k.
o
CO
0
Q
CO
tt)

P
re

de
fin

ed

Fu
nc

tio
n

C
al

l

(c
on

tin
ue

d)

CO
_i

<
LL
_J

o
I- TO

TA
L

U
N

IQ
U

E
 S

LO
C

IN

P
U

T
TO

T

R
A

N
S

LA
T

O
R

S

CO w

_i

o
1-

<N
i

ffl

c
o
CO

E
i- a
c
o
Q.
E o o
■

3
CO

CO o
I-
co
CO
<

ra
c
CO
3

o>
c
^3
CO
0>
I-
tfl
CO
CD

CO

CM*
i

m
.2
CO
H

C
M

S
-

S
LO

C

w
/S

Y

S
D

D
&

Q

TC
O

N

 CO

If)
O)

CM

CM
m
co
M-

ü
ü
ü
ü

<;
z

3 CO 35
3 CD

_j
Q.
<

<:
z

O
T—

3

co
in

3

<
Q

2 z

CD
c
0
c

I
CD
c
0
c

I

Te
st

N

um

1-

00

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

z
o o
h- o
oö
Q
Q
CO
>-
CO

<:
z Z

<;
z Z z

<:
z

lO
<
O
O

0

z

O

0
0

0

M
TA

S
S

 C
M

S
-2

U

se
r

H
an

db
oo

k
S

ec
tio

n

cvi
CM

CM

CO
CM'
CO

CM

CM

CM

CO

co
CM

CM

CO

co
CM

co
CM

co CM

CO

to
CM

CO

c
o
"3
O.

o
CO
co
Q

CO
o

Ö

c
o
O
*^
(0

1-

0)

is
E
CD
Q b

CO
-I—»

b
"cö
E
ü
0)
Q

CO

b
75 *-»
o
O

OT

b

75
E
o
a>

T3
CO
X
0)
X

CO
L—
CD
*s
CD
_l

CD

E
CO
z

CO
ZJ
CD

E
CO
z

CO
_J
<
3
O
m

u>

|2

CD
XI
CO

o> CO
O

c Q.

c CD
CO Q.
CD E

0
CD o

T3 0
O c
O
CO

<
T3
<D

CD
C
CD
O)

c
o

CL
E
o o
u
£
O
Ü

o
JO

c
CO

>>
XI

T3
CD

2
CD
C
CD
O)

CD
■o
O u
CO

T3
<
O z

c
g
"3
ü

1 g
CO c

§1
.2 "°
C TJ
•- CD

c- 2
CD CD
CO XI

e =
(O 1-

§1
18
t8
o w
ura
co x:

■o ■**
< co
_ co
.2 ffl
CO %
CO ™
CD CD
U D)
Ü CO
3 CO
CO CO
C CD
3 E

o
"c
3

CO

%
CO
©

Q.

E o
ü

ü

X
<
>
X!

T3
<L>

O
O

a
CO
CO u u
U
3
co
C
3

"co
C
ca

u

•3
u
o
3
o

o
O
J
CO
x„•

<u -o o o
« «

< <
C+1 r_

CO <

M Is o o o
in

CO
C
cd
U

00
CO
<L>
O
o
3
co
C
3

o C o o
CO

ccs

O 3

■s-i
CO u

en
CN

1

PQ

X!
U
1.
o

o
u
CS

<

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

o
CM

o
CM

00
CO
r

o 00

CD

CO
CM
O)

CN CM CM CM CO ■*

00 00 o O CD T™ «* •<r m CO V CO

ü
ü

CD CD CD *— CO CO
T- ^ O) o CM CO
X~ T— T— ^_ ^**

ü
ü 3

3

3
3
3

3
3
3

3
3
3

3
3
3

o
Ü

CM
•
C in in o> CD in 00
o co CO ^ N- N- CM

in in CO 00 CM CO
ra
E

a
c

_j •<r ■<r "«* r-- 1^
Q.
< B

3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

o
MB

a
E © © © CO ©

<
a

c c c CM c o
a
©

4-*

o
c

1
o
c

1
o
c m

3
3

o
c 3 ^

=^ CM
3 CM

3
CO

£ >? X 3 X

CO
©
1-

« £ CM CM CO t*- o
O 3

H- 2 P £ in
t- K H 1- co

CO

2 s 1" S 22 a»
T s ^ oo 00

C\J
CO CM O)

© o 3

5 co » z < a>
© P h-

<: ^ <; <; <
O

<
a ^ ^ in

< ^ ^ < < a < a 0)
3

c
^3

z Z Z z o
h-
o

o
o

Z 2 a
o
o

2 2 o
o

o
o

o
CO

V)
W

(0 CM £
(0 • o
o CO o

S £ c T— CM CO
(0
CM

1

m
o
.o
a

ül O
co «s o
CO x ©

in
CO

CM

co co CM
CM

1—

c\i CM

CM

h-'

CM'

CO
h-'
CN

N-'

CM

in

CM

CO

CM

CO

CM

oo'
CM

< •_ CO
p ©
S3

co CO
CO cd CO

CO CO CO CO CO CO CO

1-

*-»
c c
o CO •*-« ^^ c

S3 CO c K- o o.
u
0)
©
a

E "c

c TO
W
c
o
O
O ."77-

c
© *-*
(0
c
o

*■«
c
ro
to
c
o
O

c
o
O
ro
E
o
©

CD

ro
to
c
o
Ü
i-
©

c
ro
to
c
o
O

C
CO

(O
c
o
Ü
c

2
UJ

o
o

'v>
(0
©
1—
Q.
X

LU
o

© © 3 TO
CO

C UJ
© Q

Ü 75
E

u
CO CO

3
ro
© CO ©

O)
CO c E O Is o X ro o © E

CO ro o is ts © © x: CO o o 3
H D Ü o Q I O CO m 2 z

cs
I

CO

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

CM
CM
CD
eg

O
to
CD
CM

1^

co
CM

CO

CO
CO

CO

CD
CO

CD
o>

CO

o
O)
CM

C3)

CM

o
CM
CM

Ü
ü
Ü
ü

CJ)
CO

o

3

3

CM
O
lO

3

CD

o

3
3

CD
T—
CO
CM

3

CO

CO
CM

3
3
3

If)
CM
O
CM

3
3
3

CO

CO

3
3
3

CO

CO

3
3
3

CM
O)

Ö
Ü
Ö

CO
■

c
o
33
n
E
i-

_i
0.
<

CM

3

3

CO
CO

3

CM
CM

3

3

ID

CM

3

3

if)

CM
r>-

3

3

3

O)
CO
CO
CO

3
3
3

CO
CD
If)

3

3

3

CO
CD
If)

3
3
3

If)
o
If)

3
3
3

a
E
o o
4)

3
CO

< a
2

CO
■<r
CO
CO

Ü
O
3

CO
CM
CO
CD

3

CO
•sr
CO
CO

3
c3
3

CD
c
o
c

><

CD
c
o
c

CO

o
CO

3
3
3

0)
c
o
c

CD
c
o
c

><
X

if)
CO
O)
CO

Ü
Ö
Ü

CO
0)
1-
co
(0

s
O)
c
0)
3

o>
_c

(0

t> E
a> 3
1- Z

CM
CO

■h-

CO
CO
1-

CO
1-

1^ CO CD
lO

CO
lO CM

1-

1*

Is« z rf a»

cö
o
o

CM
CO

o

o

LL •^
CO

o

o

CM < a
o
h~
o

<:
Z Z z Z

_J o
CO
CM < a
o

o

< a
o
o

CO
lO
<
O
o
N-
O

CO
lO
< a
o
o

Z z z

co
CM
< a
O

O

(0
0)

2
CO

pi ■
m
o>
5
n
l-

CM ■* V o
(0 o

CO re o
(0 I aj

S3

CO
CM
CO

CO
CM
CO

CM
CO
CM
CO

CM
CO
CM
CO

CO
CO
CM
CO

CO

CM

co'

if)
CO
CM
CO

a>
CM
CO

O

CM

CO

CM
CO

CO
CO

CM
CO
CO

CO
CO
CO

CO
CO

c
o

o.
*iz
o
OT
0) a
(0
a>
H

c
o

'co
CO

£
a.
X

LU ^
ü LU

I<

c
o

'co
co
CD t—
a.
X

UJ
c
CO
a>
o
o
m

c
o

'co
(0

£
a.
X

UJ

"rö
c
g

CD

c
o

'co
(0

£
a.
X

LU
co
3 *-»
CO *-^

CO

c
o

*co
CO

£
Q.
X

LU

a) *-»
u
5
CO
.c
O

c
o

'to
co
£
Q.
X

LU
O)
c

CO

m

c
o

'co
CO

£
a.
X

LU

"fij
c
o

■5
c
o
O

0
Q.
>«
1-
a>
Q.
E

CO

CD a
CD
a.

c
LU

E
0)

w i
O >.

CO

w
c
CD

E
E
o o

X
O
\-

CO
Ü

<s
t

PQ

00

« o 9 z
•»-'Or"»

g§gg
o
CM
o
CM

in
CM
en

CO
CO
o>

CM
CO

o
in
CO

CO
CD
CO

co
co

o
CM

co
CM

CM
in
co

co

CD co
Ü W to o ■«fr CO

^

CM CM o
o t*- r^ o CM o CO CM CO CO co o CM CO o ^ in o CO O) TT x—

Ü O) CO o CM co CO CM CM CO CO in
o>

Ü

Ü
Ü
Ü

O)

5 3 3

O)

3
O)

Ö
o>

3 3 3 3 3

CM

_) 3 3 3 CJ 3 3 3 3 3 ~) 3 O
_> 3 3 3 Ü 3 3 3 3 3 3 3 Ü

t

c
•3.
re

Q.
<

CO
CO

CM
CO

CO

in
CM
in
CO

CM
in m
CO

CO
CO

CO

CO
co

co
CM
CO
O)
co

o
OS

co

co
in

in

CM

o
o>

CO

E

£
©

5
3
3

3
3
3

3

3

3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

Q.

E
o
ü

<
Q

©
c
o
c

CO
CO
in in

O

m
© c o c

©
c
o
c

o
in
CO
co

CM CO
o
in

©
c
o
c

© c
o

© c
o

a

3
CO X

O
O
Ö

CJ

o
o

3
3
3 X

s 3
3
3

Ü

O

Ü

Ü

O

Ö
O
Ü 1 I 1

© « 1 CO •«a- in r- CD o> o in o CO [v. |i 0) 3 (^ h- h- CM CN CM CO r^ CO co co
CO

1- z 1— l- t- 1- K H t- 1- K 1- h- 1- t-
CO

2 £" 5
DJ
C

«1
3

O)
c

2 co ©
*■ s * © o 3

3coS
* < 0» © P H

2 2 2

in

<
O o r^ o

T— o
< o
o

Q
< o
o

<
CM
CO
<
O o
i^ o

m
CM
CO
< o o
o

co
CO

< o o
o

CO
<
O
o
O

z
Q
< o
o

a
o

o

Q
U.
o
o

o

a
o

o

5! a
o
o

oo
CO
< a
o
o

•**
m ES
© (-

<?3 se CO o

CO T— v- CO •«* ID m CD CO i^ CO o> o o o T- CM CM
CM to « o •* T Tl- ■<r •* ■* ■* ■«* ^> Tf ^
m
0)

CO X ©
< •_ CO

CO CO CO CO CO CO CO CO CO to co co' co co co co' CO
P ©

re S3
t-

c
o u *rf u © 73

©
a
©
.a
re

Q.
"E
U
(0
©

CO

o
o
m
©

to
o
©
Q

©
Q
X
©

C
73
©

L-

©

»2 73
©

75
©
Q
c
o

Q
©

■D o
2

Ü
©
D o

©
4->
(0
©

to
c E

Q c
to o
to ~
SI re
2 re
< ©

D
to

3 c
re

© > Q
O) 5 ©

n
(- re

©
X

g
Q.
O

©
to
>>

CO

3

©
D

re
3
cr

UJ

•4-»
to
.Q
3

CO

CO
c
o
Ü

3
Ü
©
X
ID

ö o
a. _i

©
•a
o

CO 1

VO
CN

i
03

I

c
o
*5
n
E ■_

£ c
©

Q.
E
o o
I

M
3

CO

0)
0
h-
CO
CO

2
c
CO
3

O)
c
(0
0)
H
(0
(0
£
4-*
CO

oi ■
m
©

CO

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

co
CD

o
co
co

o
CO
co

00
O
CO
co

o
CM
CM
CM

CD

CM

CM o
CD

in
CO

co
CM

CO
CO
CO CO

Ü
ü
Ü
ü

h-
<D
CM
O)

Ö
Ü
Ö

v—
O
co
co

3
3
3

CM
o
co
co

3
3
3

O
oo
co

3
3
3

CO
CO
CM
o>

Ö
Ü
Ü

CM
00
CM
O)

Ö
Ö
Ü

CD
CO

O)

3
3
3

O)

3
3
3

00
oo
CD

3
(3
3

CJ3

3
3
3

CM
T—
O)
CO

Ü
Ü
Ü

CM
CM
O)
CO

Ü
Ü
o

_i

<

in

m
co

3

co
in

3
3
3

O
CO

3
3
3

O)
m

3
3
3

CO

3
3
3

00

CM

3
3
3

CM

in
co

3
3
3

CO

CO
co

3
3
3

m
CO
m

3
3
3

o
in
CM

Ü
Ü
Ü

CO
CO

CO

3
3
3

in

■sr
CO

3
3
3

< a
3

3

CO c o c

I
a>
c
o
c

I
a>
c
o
c

I
co
o

Ö
O
Ö

oo
CD o ^-
Ö
Ö
Ü

CO

CD
co

3
3
Ö

in
m
co

3
3
Ö

CD
c
o
c

><
X

in

CO

Ü
O
O

00

CO
CO

3
Ü
Ü

CM
CO
CO

Ö
Ü
Ü

Te
st

N

um

eg
co
h-

o
CM
1-

CM co
in
CO
1-

CD
CO co

CO

h- 1-
00

1-

OS

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

co
<
O
o
r-
o

O

O o
t^ o

Q

a o
O

O o
o

<
co

a o
o

00
co

a o
o

<

O o
h- o

m

O o
o

Z Z

O
Q
o
o

a: m
ü
Q
o
o

a:
a:
in
ü a
o
r»-
o

_i

a:
h- a: o
LU
Q
o

o

Z

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n co

co co

"3-

CO co

in

co

in

■"3-
co

CD

CO

CD

■"3-
co CO

ID

CO

CM

in

CO

CM

in

CO

CM
in
CO

CM

in

co"

CO

in

CO

c
o
t3
Q.
*C u
CO
0)
Q

CO

o
<D
Q

c o
'm
o
£ a.
co
O) c
co

"o
CD
o
o>
c
'to
(0
co a.
w
aj
a)
E
2
CO
a.

T5
CD
Q

a)
CD
cu
a
X o
H

CO o

o

Q

'5.
CO

o
cu a
CD

■o
o

c
"S
o
CO

c
CO
CD
Q

CO *-^
CO
Q
E
CD •*-*
to
>.
CO

o
o
CO
CD
■o o
Ü
■5
S>
b

CD
Q
CD

JO
CO
1-

CM
i m

C
IW

S-
2

S
LO

C
 w

/
S

Y
S

D
D

&

Q
TC

O
N

o>

CO
co

CO CO
CN

in
in
CN

O)

in
CD
CO

co CO

CD
CO

W CO CO CO m CN T—

CO o in o ,_ CO "^ CD CM T— in CO CD O CO

ü
o r^- o O) in CO CO in ^
^r co CN in CO co CD

O T— *— T— T~ v V- O) O) CM

ü
ü 3 3 3 3 3 ED 5 B

3 5
ü

5
3

3
3

5
3

3
3

5
3 3 3

3

3

(0
•
r CO CO O) ■<* <<r CD in CO o T— CO 00 CO CD O) CD m

CO CO CO CO in CD CD «Li h-

a _i CD 1^- CO h- r>- ■tr CO ^~ CM

E Q.
< D 3 3 3 3 3 3 3 3 5

3
3
3

3
3

3
3

5
3

5
3

3
3

3
3

3
3

a.
E o
o

<
3£

CD
c
o
c

CO

o
CO

CO
a)
c
o
c

a)
c
o
c

CO

CO

CD
c
o

•
o 2 3 J

3 £
^ 3 3 Ü ""» ■^ "^ 3 y>

3
CO

t-
§

3
3

5
3

ü *- i i 3
3 1

CO
0> » E CO ■<*• CO ,- co CO 05 00
1-
co

O 3
1- 2 1- (- h- 1- 1-

CN
1-

CO CO
1-

CO

2 g^ 5 2 w a,
- S *
« o 3

ES2

CN
U. h- co TT O) co

< a
CO

c
CO

o

<
O

<
O

r—
< a <

2 2
< a

m
< a
o

^ ^
in
< ^ <: <: 5! o

3 3 to » o o o o o <L -^ o z 2 2 o
LL 1^- h- r«- 1^. t^ 1^. h- r»-

c o
o o o o o o O o

(0
ES

CD ,_,
CO
CO «*«
p CO o
*<

O 1 o
co «s o
to I ©
< «_ CO
£ 2

CO

oi
■

CD
o

CO

in
CO

CN

CO

in
CO

CN

CO

in*
CO

co'
in
CO

in
CO
in
CO

in
CO

in
in
CO

CD

in
co'

iri
CO

1^

in
co

CNJ

N-'

in"
CO

CO

h-'

in
co

oo
in
co

£1
a S3
1-

c
o

a. 73
cu

73
cu
Q

E
o
o .c

a
M
0 o
en
a)
1-

13
CD a

T3
.CD

o
CU
D
CD

X)
CO
1-

1
CD

"5
CD o
CO

<
1

E

o
CU a
CU

CO
h-

U
>»
ro

CU
>
O

I
T3

CU

CO

8
0.

ro
c
a>

73
cu
Q
cu
XI
ro

CD

"5
CO

CU
h—
3
•o
cu
o

73
cu
Q

X
UJ a

m
x:
o

'I
to

ill

o

5
to
LU
_l
CD

o
Q

73
CO
Q

a3
G>

E
(0 m CD 3 CU O ■R CO p ^ l- \—

LL _J ^-^ CO U. ^ UI > 0. 0. 0. 0. a.

oo
CN ■
CD

c
o
53
(0
E

c
0>

ä
E o
o

I

3
CO

(0 a>
H-
CO
CO

2
en
c
(0
3
O) c
0)
a>
H
to
(0 a>
+■>
CO

ci
GO
a>

I-

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

o>
in
CM

CM
CD
in
CM

o
CM o
CM

o
CM
CM

•«a-
m
CM

O
CM
CM

CO
in

CO m

O
ü
ü a

co
co

3
3

in

CO

3
3
3

CM
O
Oi
O)

3
3
3

CO

CO

3
3
3

O)

CM

3
3
3

CO

CO

3
3
3

CO
CO
m

3
3
3

CO
CO
m

3
3
3

Q.
<

co
oo

3

co
co
o
in

3
3
3

co
CO

m
3
3
3

in
CO
in
■*■

3
3
3

in
O)

3
3
3

in
CO
in

3
3
3

co
O)

3
3
3

co
a>

3
3
3

< o
2

<D c o c

I
co
co
co
m

3
3
3

0) c
o c

I
CD c o c

I
<D
c
O c

I
a>
c
o
c

I
a>
c
o
c

I
a>
c
o
c

I

Te
st

N

um

CO
CM

CO m
1-

co CM m
1-

CM m in

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

co
<
O
o
o

o

O o
O

<;
z

in
o>
<
O
o
O

CO
<
O o
1*- o

a
o
o

co
< a o
h- o

<:
z

oo

< a o
1^ o

co

< a o
t^ o

z z Z Z Z
<;
z

M
TA

S
S
 C

M
S

-2

U
se

r
H

an
db

oo
k

S
ec

tio
n

o>
in
co

O)
in
co

o
X—

in
co

in
CO

CM

in
co

co'

in
co

CM
co

in
CO

"0-

in
co

in

in
co

CO

m'
co

CO
CO

CM
CO
CO

CM
CO
CO

CM

CM
CD
CO

CO

CM
CO
CO

c\i
CO
CO

c
o
a.
°ZZ
o
n
a>
Q
■*•>
(0
0)
H

73
<D
Q
>.
CO

>
O

c
<D
E
0)
CO

co
CO *^
CO
Q

73
<D
Q
<D
O) c
CO

73
0)
Q
*^
CO
E
k. o
LL.

73
a)
a
ü>
i£
"E
(0 •o c
CO
CO c:
o
2

73
<D
a
a)
iZ

■E
CO
■a c
jS
CO

75
<u
Q
E
£
c
*^
CO

73
<u
O
■ w

a. c

73
0)
D

.52
CO
Q. ♦^

o

E
CO

•o
CO
Ü o
QL

E
&
CO

CO

c
o»
w
CD
a
CO
CO a
"5 o
o
_i

o
o
CD
JT
Ü *-«

CO
X
a)
T3 c

u
o
CO
x:
ü

CO
E
a>

o
o
m
o

CO
a>

O a

73
cu
a
E
CO

o
a.
"5 o
o
_i

ON
CM

i
m

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

O
m

o
m

CO
CM

o
CO

IO

CM
in

CO
CM
■«t
CO

CO
CO

CO
IO
CD

m
CO

ü
ü
ü
ü

©
c
o
c

©
c
o
c

X

CO
O
O

3

CD
CD
o>
CM

3

3

3

•*■

CN
CO

3

3

Ö

o

55

3

3

3

O)
00

3

3

3

00
O)
O)
00

3

3

3

o
CO
o
O)

3

3

3

00
1

c
o

a
E
a
c

a.
<

CO

3
3
3

CO

3

3

o
CD

3

3

3

ID
IO
CO
IO

3

3

3

IO
O)
o
T—

3
3
3

CD
CD

3

3

3

IO

o

3

3

3

CO

CD
CO

3

3

3

in

CM
CO

3
3
3

Q.
E
o u
■

©

3
CO

<
Q

§
1-

s=! co
3 "fr
§5

5 «^
=C CO

55

CM
CO
O)
m

3
3

3

0
c
o
c

3 £
3 £

CO

3

3

3

CO
CO

CO

O

O

CO

CO

Ü

Ü

Ü

©
c
o
c

X
X

«
0)
1-
to

0 3
H- Z

o
CD
h-

o
CD

CM
CM
1-

CM
LO
1-

CM
1-

CO
CD
1-

CO
t-

in
CD
h-

CO

s

0)
3
o>
c

(0
© l_

1™ 2 CO ©
"■Sä
0 o 3

Eww

3coS
* < ©
©PI-
ES

Z

<

< a
o

o

<

< a
o

o

CM
CM
< a
o

O

Z

CM

s
< a
o

o

z

O

< o
o

o

< a
o

o

Z

<
CM
00
<
O
o
t^-
o

CQ
CM
00
< a
o

o

Ü
CM
CO
< a
o
1^
o

CO
(0
0

CO

CM i
m
©

a

CO o
S £ £
co «s o
CO I 0

g 55OT

S5

CM

CM

CD
CO

CO
CD
co"

CM
CO
CD
CO

CO
CO
CD
CO

r-'
CO

CM

T—

h-'
CO

CM

CO

T-

CO
r-'
CO

CM
CO

CO

CO
CO

CO

c
o

Q.
i-
u
0)
©
D

CO
0
»-

c

'co
©
D
ro
CD

Q
o
3

©
Q
A:
o
o

00

2>
3

©
Ü
o

"o
©
Q

o
o
m
c
o
•^
Ü
c
3

LL

"o
©
Q
JX
o
o

CD
o
o
a.
u
©
X

UJ

«5
ID
X
©

C

©
u

3

c
g>
'55
©
D
CO

CO

D

E
©
D) g
Q.
X)
3

CO

|
55
©
>

©
©
Q.
E

©
CO
© t—
x:
CL

©
CO

©
CO
ra

-C
a.
c

©
m

©
CO
©

x:
a.
c
l_

©

©
I

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

o T— in in in CD CM T- in N- l>- 1^- 1^ CD co
CD O) IO CO CO •* 00 ■* 00 CO h~ CO CO ■«a-
in ID CO CO 00 T— CD in 00 00 CO 00 CO ■^r CO
T— T— ▼- CM CM CO T CM ■* •* ■^r CM co

ü
ü

CO
CM
CO
00

CM

CO

CO
IO
o

CO
CO
CD

CO
CO
O)

CM
CO CM

o

CO

CM
CM

CO
CO

CO
CM
CO

CO
in
o
o>

CO
CM
CD

CO
CM
CO

IO
ro
CO

CO

CD
CM

O
ü

5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 B 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0>
1

c r*- CO CM o o CO CM CD o o CO o o o in
v- ^~ <<*■ •* "* V" O i^ •sr ■«if CD ■* ■"I- co h- o ^— T^ CM CO CD O Is- O) CO CO CM CO CO o CM 1 _i

<
CO CO CO ■* ■* CO CO CO «a- 00 CO CO CO m r-

E 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ^
o 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
lil
c
©

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

E
h- CO © © © in © © © © © © CM © o o c c c ■sf c c c c c c m c o < CD CO o o o ^ CO m o o o o o o CD o o a CO CO c c c 5co ■«3- c E c c c c in c

i

&
3
(0

< a. £3
O
Ü

£3
O
Ö X

i
><

£ it Ö
Ö
Ü x

^

X >< X
><
X

3

3 I
(0 % E

© 3
H Z

CD h~ CO CO CO V CD o CO h- ,_ h~ r- co 1^ 0> CD CO CO CO CO CO CO tt CO m h- in m f^1 ^
H H- 1- 1- 1- 1- H \- 1- h- h- h- 1- 1- 1- H
(0
(0

2 i"
2

c
w

2 w ©

E ÜOT

<
CO
CO
<
Ö

m
CO
CO
< o

Ü
CO
CO
< a

5 a
o

2 a
o

< a
o
1^
o

co
CO
< a
o
o

CO
CO
in
< a

5 a
o 2

co
<
O
o

o
CO
< a
o
1^
o

CO

< a
o

co
< a
o

co

5! a
o

5! o
o

3 7 CO W

©pi-

o o o r^- r- o h>- h- h- 1^ Is-

c o o o
o o

o
o O o o o o

53
(0
©

ES

H
(0
(0 V%
0 CO o

CO

■ a
©

ü ? ©
CO « o
CO x ©

2©-w

CO

CO

CM

CO

CO

CO

■*"

CO

CO

io
CO

co"

CM

in
CO

CO

cb
CO

CO

CM

CO

CO

CO

CO

CO

CO

CO

r^
CO

05
CO
1^
CO

o

CO

CO

co

co

CM

co

co

si
10 S3
1-

©
CO
©

c © sz o
Q.

©
V)
CO
1_

©
<0 ©

V)
CO

sz

a.

10
"co
Ü

©
©
(0
CO

sz
a.

O
(0
©

sz

.2
o

5
SZ
a.
o

CO
JO
x:
a.
o

a.
"co
o
Ü

Ü
Ü
o
I—
a.

sz
_Cj

(0
I—
sz
a.

©
CO
© 2£

©
CO

2
©
(0
CO

(0
© ©

o
O o

Ü
2
Q.

T3
.© X

til
O
5

o
CD

sz
0.

©
E

o
o

CD
t_
o

sz
a. sz

a.
I- Q.

E © E
©

©
CO

Q.
Q.
3

a ai
l- ©

Q.
O

zz\

©
©
X 'sz

CO _c 3 w 0- a. > CO Q: u. 111 CO

P3

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

o
CM

o
CM

o
CM

o
CM

CO X—

o
00 N-

O o O O CD CD CD CO
IO

CM CM CM CM CO •* CO

O
ü

CM
O
CO

CM
o
CD
CD

CM
O

CD

CM
O
CD
CD

CO
T-
co
CM

OO

5
CO
T-

CD
T—
CD
CM

CO
CO
IO

o
Ü

3 3 3 3 3 3 3
Ü3 3 3 3 3 3 3 ~)

o

3 3 3 3 3 3 3 3

•
CO CO CO CO in CD in c oo oo CO CO i^- 00 h- r^- o ^~ T~ v- T- CM O CM ^

♦* _l co io lO in t^- CD f^ co
a Q. «^. «**. «*^ «^
E
£
c

©

< 3

3
3

3

3
3
3

3

3

3

3

3

3

3
3
3

3

3

3

3
3
3

a
E
o
u

■
©

3
CO

© © © © a) ©

<
Q

1-

c
o
c

I
c
o
c

X

c
o
c

c
o
c

X

c
o
c ^2

Is
c
o
c

X

©
c
o
c

I
CO •« E co CO CO CO h- CNJ h-
© © 3 r^ h- h- N- T—

ro
t- 2 H H H H- 1- J- h- 1-

CO
< E «*
I-
S
O)
c

Sw ©
- 2 «
© o 3

w

<
O

m
CD
<

in
CD
<
O

w
CD
<

CM
<

lO

<
CM
< •$ ^ ^ ^ <: <C <C

oo

<
o
o

o
3

O)

^3

5co «
2 < © «pi-

o

o
o

O

o

o

o

o

o

o
o

o

o

o

Z ^ 2 Z z Z z

CO
tt

CO ■**

0 CO o
S £ c *~ CM CO 'tf

^j-

co
N-'

CO

T- CM CO ■* co CO t^- ■^

CO

•
m
©
J3
a

co <s o
CO I ©
2©-w

S3

co
v-
co"
r-'
co

CO

CO

h-'

CO

CO

CO

CO

CO

CO

CO

co
h-'

CO

CO

CO

CO

CO

co'

CO

CO

h-'

CO

CO

CO

CO

CO
ir-

CO
t»"
CO

CO

CO

1^-'

CO

CO

co'

CO

CO

CO

CO

00
CO

co
r-'
co

1-

c
o i_

©
a © © c
V. ©

co

JC
0.
>>
CO

a.
V)

co
CO

JC
D.
©
o
CO

1-
T3
c

© CO *u-
O
CO
©
a
to
©
1-

©
CO
CO
k-

JC
a.
Q.
CO
c

©
CO
CO
k_
JC

©
u
(0

©
co
CO
I—

JC
0.
Q.
CO

5

©
CO
CO
i—

•JC
a.

©

©
(0
CO
h_

c
©
Q.

©
CO
©

JC
a.
©
(0
o

©
CO
ro
J=

©

■D
C

©
(0
©

J=
0.
Q
Li.
Ill

©
CO
ro
k.

JZ
Q.
O

T

CO
ro

JZ
0.
co o
CL
_J

2
JZ
a.
CO
O
a.
i-
LU

a.
©

JC

o

3
Q.
"5 1 Q (0 h- III CO Q. O O LU D Ü u_ CO O

■
CO

c
o
a
E
£
©

o.
E
o o

3
CO
*J
(0
0)
i-
co
CO
<

o>
c
(0
3
O) c
0)
a>
f-
0)
M
£

CO

cji
CD
»

«

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

o
CM
CM

CM o
CM
CM

00

CD
CO

oo

CD
co

CO

CD
co

co
co

CD

CD

00

CO
CO

CO
CO
■*■

Ü
ü
ü
Ü

00

3
3
3

00
oo
CM
o>

3
3
3

00

co
T—
X—

3
3
3

CO
CM

3
3
3

CD

CO
CM

3
3
3

CD

CD
CM

3
3
3

CD
CM
CD
■<J-

3
3
3

CM
CO

3
3
3

CO

CO
CM

3
3
3

in
CD
i^
CO

3
3
3

0.
<

in
co
m
■*■

3

CO
CO
co

3
3
3

lO
CO
«5

3
3
3

in
h-
CM
f-

3
3
3

in

CM r^
3
3
3

CM
i->-

3
3
3

o
CO
CO

3
3
3

co

o
CO

3
3
3

lO
r^
CM
h~

3
3
3

O)
CO

00

3
3
3

< a
§

cz
o
c

I
o
■«a-
T—

Ü
Ü
Ü

c
o c

I
c
o c

I
05
c
o c

I
0) c
o
c

I
05 c
o c

I
oo
CO !*-
1^

3
3
3

a)
c
o
c 1

^ CO =i in
3 °2
3 ^

T
es

t
N

um

CM

P
CM CM

P 1-
v-
1-

lO
1- P 1-

Fi
le

 N
am

e
fr

om

M
TA

S
S
 C

M
S

-2

Te
st

 S
ui

te

CO
<
O
o
1*-
o

o>
<
O
o
h-
O

z

00 < a
o
o

<:
z

<:
z z

2 o
o
o

3 o
o
O

5!
O
o
r*-
o

5 o
o
o

m

a
o
o

CM
<
O
o
o

CM

< a
o
1^
o

M
TA

S
S

 C
M

S
-2

U

se
r

H
an

db
oo

k
S

ec
tio

n o>
CO

co

CO

o

CO
T—

CO

co

CO

co
N."
co

CM

CD

CO

CO

V

CO

CO

oo

co
i^
co

1^
co

CM

co'

co

co

CO

co

1 CJ
T- CM

CM CM
CO CO
CO CO

CM
CM

CM

CO

CO

c
o

33
Q.
"E
U
(0
a>
Q

(0
a>
1-

a>
05
CO
L.

a.
*-»
3
Q.
C

(0

a.

o
O
c

111

a)
05
Co
i_

a.
a>
•a
o
o
a>
D

c TO
Ü

CO

(0
E
o
u.

05
05

E
0.

"5
Z

a)
05

x:
Q.

X
LU

0)
05
3
(0

Ü

a>
05
3
CO

O
<D
05

UJ

05
05
3
CO

Ü
T3
cz

LL

75
O
c
o
o
c
3
li-

fe
05
3

75 o
c
o
Ü c

Ll_

■D
<D
c
l^
a>
•a
£
a.

«t s a

en
i

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

CO
CO

m
CO
CO
CD

CM
CO
CD

m

CO

in

co

O)

CO

O

CM
m

1^

CM
CM

in
CD

CM

00
CO

CM

CM
CM
in
CM

oo
CO
in
CM

CM

1

c
o

CD

E

O
ü
ü
ü

CD
CO

CO

3

T—

■<*
CO
r—

3
B
3

o
CO

3
3

rt
CO
CO

3
3
3

O)
o
CD
CO
T-

3
3
3

O)
ID

3
3
3

O
CO

O
T-

3
3
3

CO

CM
CM

3
3
3

o

3
3
3

O
o
o

3
3
3

CO
00
CO
O

3
3
3

O
O)
CO
o

3
3
3

CO

CM
o

3
3
3

a.
<

y—
00
o

3

3

in
T—
oo
o

3

3

o
CO
o
T-

3
3

00
o>
T-

3
3
3

O)

3
3
3

CO

in
05

3
3
3

CO

CO

3
3
3

CD

o>
CO

3

3

3

3 --*
3
3

CO
o
CM
■<*

3
3
3

o
in
■^r

3
3
3

CM
00
CO
■<r

3

3

3

00
o

3

3

3

a.
E
o o
©

3
CO

< o
IS

3«

IS
r5 m =: co
3 °°

15 •*- =; oo

it
3 ^ =: oo

It
3 ^ =c 00
3 «o
§5

CO
CM
h-
w

3
3
3

©
c
o
c

X

o

•<*■

3
3
3

O)

co
,^-

3

3

3

CO
o>
m
m

3

3

3

©
c
o
c

1
©
c
o
c

«0
©
1-
ro

• i 0> 3
1- 2 ? in CO

»-
00
1-

O) O
H

o CM CO in

CO

5
DJ
C

10
3

CD

CO

I" 2 W a>
- S *
© O 3

5 to a
^ < ©
©pi-

<
T—

<
O
o
h-
o

m

< a
o
h-
o

O

<
O
o
o

<
CO

<
O
o
t^
o

m
CO

< a
o
o

O
CO

<
O
o
o

< a
o
o

oo
CO
to
< a
o
O

<
00
CO
m
<
O
o
r^-
o

CO
CO
CO
m
< a
o
h-
o

Ü
oo
CO
in
< a
o
o

Q
CO
CO
m
<
O
o
h-
o

UJ
CO
CO
m
<
O
o
h-
o

r"
0)
n
£

CO

CM •
ffi
0
n
(0
1-

<?3
CO o

ü ? £
CO « o
to I ©
2©-w

S3

CM
CM

CM
CO
CO

CM
CM

i

CM
CO
CO

CM
CM

1

CM
00
CO

' CM
T- CM
CM CM
00 CO
CO CO

CM
CM

CM
CO
CO

CM
CM

i

CM
00
CO

CM
CM

i

CM
00
CO

CM
CM

i

CM
CO
CO

CM
CM

CM
00
CO

CM
CM

i

CM
CO
CO

CM
CM

i

CM
00
CO

CM
CM

i

CM
CO
CO

CM
CM

i

CM
00
CO

c
o
«3
a
^
u
to
©
D
«->
CO
©
1-

Ü
c
g
o
c
3

U-

,§ ©
© 2

£ c
0. O

■
CO

CO

c
o
n
E
i-

£
a>
Q.
E
o a
i

i
3

CO

(0
a>
H
CO
CO
<

c
(0
3
o>
c
CO a>
h-
(0
(0
2

CO

tN
CD
0) s
CO
I-

C
M

S
-2

S

LO
C

 w
/

S
Y

S
D

D
&

Q

TC
O

N

00
CO

CM
CO

CO

CM

CM
CM
CM
CM

co
o
CO
co

in o
CM

o>
o
CM

oo
co
CM
CM

o

CM

Ü
ü
ü
Ü

O
lO
CO
CO

B

D

05
CO

co

3

m
co
CO
CO

3
3
3

lO
O
CO
a>

3
3
3

co
CO ^-

3
3
3

o
O)
O)

3
3
3

CM
CM
co
o>

O
3
Ö

in
CO

O

3
3
Ö

CM
in
CM o

3
3
Ö

_j
a.
<

CD

CO

3

lO
CO
CO
co

3
3
3

CM
co
■<*■

3
3
3

O)

co

3
3
3

CM
CM
O
CD

3
3
3

co
o
co

3
3
3

oo
CO
05
co

3
3
3

m
CO

3
3
3

'Cf
•sr

3
3
3

< a
i

CD
C
o c

o
CO
CO
CO

3
3
3

CD
c
o c

I
a>
c
o
c

I
o>
CO

co

Ü
Ü
Ö

00
co
•«a-

Ö
O
Ö

oo
CO
co

Ö
Ü
Ö

oo
w
oo

Ü
Ü
Ü

CM o
O
in

Ü
Ü
Ö

Te
st

N

um

CO
in
h-

CM
1-

lO
in
in
1-

CO oo o
in

Fi
le

 N
am

e
fr

om

M
TA

S
S

 C
M

S
-2

Te

st
 S

ui
te

CN
CO
CO
< a
o
o

oo

5! a o
o

LL
CM
co
lO
< a
LL

o

CM
LL
CM
CO
in
< a
LL

O

O)
CO m
< a o !"-
O

<
o>
CO m
<
O o r- o

CO
ro
CO
lO
<
O o
o

Ü
O)
co
in
<
O
o r*-
o

Q
05
CO m
<
O o
O

M
TA

S
S

 C
M

S
-2

U

se
r

H
an

db
oo

k
S

ec
tio

n CM
CN

CM
CO

co"

CM
CM

i

CM

CO

co

CM
CM

i

CM
CO

co

CM
CM

i

CM

CO

co'

CM
CM

CM

CO

CO

CM

CM
CO

co

CM
CM

i

CM

oo
co

CM
CM

1

CM

co
co

CM
CM

i

CM

00

co

c
o
S3
Q.
i_
O
CO
0)
Q
<->
0)
CD
1-

15 o
c
o
o
c
LL

«i 9>
0) ^
"O .£
£ C
Ü. o

in
en

i
m

CM i
CO
S
ü

ü
o
_J
CO fco

c
o
re
E
£ e

Q.
E
o
o

3
CO

CO o
H
CO
CO

2

Ü
Ü
Ü
Ü

0.
<

to
3
D)

_C
^3
(0

to
to
co L.

<•■*

CO

■
CO

XI

<

2

c
o

o
to
cu
D
*-«
CO
0)

CO
c\i
CM

oo w'

co o>
CO 00
CD <D

o
in
oo
CO

CO
05
in

tu
D
O
Ü **- o
CO
UJ

o

«a-* ^8

T— r^-
■*»• | CO

,_

on oo 1

o
CD

X) o JO

■*r CO T X
CO «~ Q. i_.

E
o

U.

E
u u

u

CO
oo
o
o

CM

I

X)
jo
■Q.

E
o u

CO
00

o
o

CN

T
XI

*5.
E
o o

*1-
00

I
0)
XI
JO

'5.
E o u

■<fr
00
«•—
o

CN

O
CM

I
a)
XI
m
'5.
E
o
o

"fr
in
««-
o

I
a>
Xt
CD CM ^

""^ 'a.
E o o

00 <D
XI

O CO
T- CL

E
0
0

Ü
UJ
cr
a:
o
ü

o
1-

5

o o

in

CN

I
a>
XI ro
'5.
E o u

*5 0^

•<*
00 d)

XI
0 CD
T- Q.

E
0
u

in

CM
CM

I
0)
XI ro
'5.
E o u

Ü
III

2 0
UJ 2

O <r O
rr 1- IX. 1-
on
0 3 O

O S
0 a. H a.

±> < :>
3 O 2 O

CO 0 Ü ü

en
1

c
cs
£:
>>
.0
•«
u

u
c
0

0
3

•a
0
u

T3 0.
0)

c eu
3 (S
O
u O

•a
u
CO cu

.0

CO
tfl
cu E
00 3

Crt CO c
c ^
co 0
Ü CO

a. S
eu •X3

IS
CU
c c

— IS 0
es eu •0
60 •a eu

V)
C u a a. ja
fc V eu
3 JS
V) x>
V) „ eo
CO w *3j

C) eu a.
n X) h

fc
3

0
CJ

c eu •a
V eu e>0

CO

cs
E £ eu

u
VI O u

UJ U. cu

CD
■a
o
O
0) u k.
3
O

CO
cs
to
s
Ü
>1 u
CO
O)
©
-I

0)

3

c
o
o

I

o
0

I"
0.
O)
c
CO

CO
c

'5.
E o
Ü
■o
c
CO

c
♦5 a
15 c
CO
w
H

*?
CD
_©

£
CO

co CO
2 C

5
Ü
O

"to
to

E o
t00m^ _i £ O

c CO CO *♦—
1o
CD

_i
o is CO

CO
CD

CO (0
CO
CD
c
CJ

2

1_
0)

E

£

3
C

'E
■*

CM CO

CO

Ü

CD

C

E
CM

CO
CO
CO

CO ^. «^ CO ^^ 3 o
c
CO 0. 5 3 0. 3 Ü

a
'•4-*
Ü H 3

3
E
o Ö

O »t CO
■4-«

Ü >* c
Ü c (0
Ü 'co

E
TJ
0)
Ä CD

CD i2

CD
■a

■>
o
Q.

O CO
O
c
3
to

Ü
O «2 >

of
Ü
O

CD

CO

c
o

"CD

C

"E

CO

CO
lO

co"

» CO

ll
CD *-^
C

E

CO
o

CO

CD
.C
b.
o
'co'
E

0)
V"

Lu 8
N^ -^ CM

c
2 0. 3 0. 3

3
^
S

_j

3
3

CD CD

2 2 3 CD
JO

a.
< ~ o o *-*

T3
CD

CO
S

2
Ü
O

T3

co ü-o
Z $ c
O - ro

H S < a)

£ CO
coS
ffi Ü

"Ö ©

E o
o -E
o 5
CD -
S CM £ ° SO

^
€

T3
CD
CO
1»
CD

o

CD

■o
T3
CO

CO
CO

-
c

c
o

p

CD

C

CO
o

00

a. co Q -3
o<< .s.
o E ^- o

O
JD
CO

1

c
CD
O)
CO

-
C

CO

«

CD

E
CD *-»
TO

JO
CO
c
2
1-
<
O

5

'E
CO

0.

r-"

3
3

co ro ^ ° S LU -Q o
Bo. oil

= 1-
co 2

*- CD
CO co

2 -*

&
3
C

E
r

<
o
c

c
o

<
Q
<
EC

"co
Q
<
LU
X

Q
3

§Jü2
^- o
CD CO

© o-
LU s H- Z

LU
c

H H- co c
10 3 ^

1- T3
<

<

^^^
CM ° 2 o

■**. **^

Ü CO _j CD LLI
2 co 3 *—' _ 0

U «
O" w 9 •-
3> £ ALU E

8<M ©

an
d

C
od

i

its
1 3

Ü
O
_i

O
o

1*
o" S

■31
2 E

CO

CO
CO

tS^co
c E ° C CD ±=

_j
CO

■R E O) o to "E CM
LU O 0>" O >. o ■*

_i o CO Ü

O)
c
'E
CO
CD

E

0
■D
O
Ü
CO

<
■D
CD

'5.
E
o o
o

S I Q.

CO
I—
O
b. ^_
CD

O ^-»
_co
co
c
CO

co I ^S
CD
c
CD
CD

'5.
£
o o
CO

T3
<

I 1
CD

n CO
CO >» CD ^-» f) u f)

2 co
o c
O 3

>»
XI

■o
S
CO

CD
c
CD
CO

0
•o
O
O

■g ®
< 5
O CO

2. o

tr,
i

PQ

3
CO
CD
a:
©

"a
E
o
ü

Ü 3 X

CM
i

©
■a o
O
0) u L.
3
O

CO
CM
i

CO
S
ü
o
«B
O)
0)

_J

tt
3

C
O o

a
*■« u
©
o" ■_
0.
O) _c
«5

Q.
E o
o
■o c
10
D) c

(0 c
CO

CO

m
©

m

©
c X3
o o "O o

fo
rm

er

'M
S

 In
&
3

o
_J
CO
CO

O 3

~ i © >

1*
1o
©
3

O
_i
CO
o

©
JO

:C
 T

ra
n9

VA

XA
/ C

E

a. 5

C 8

© (5

C

E
in

a.

CO
co"

o

o.
c

u
ü
ü

2 »
CO UJ

3 E
© © o:

U i CO
© Ü
Q-O
© CH

>.
(0
©
E •D Q.

o ■ *^
CO o CO © o

Ü
*! o

Q.

E
o
Ü

CM

CO

3
CO

c
o S

3
c

O
_i
CO
CO
CO

CO -e
CO T3

» m

lo"
©
3

O
_i
CO

o
J2

E
v-

E Q
C

E CM" o
CO
c

w «^ o ,
•fc CO CO ©

c
CO

H
_J

0. Si >-
3 CO

.Q <D

a. 5 o
o
c

Q. CO o T>
<

£ TJ

©
c
x>
E

(0 ©
>>TJ

o
o

••— W 3
©

CO o © U k—

2

<
©

TO

CO
© -o

Q) CO

E.E
** w
_a> re
-5" m «= o

©

©

■>
o
k_
CL

>
c
o "©"

©
C
© 85

KOTO
°u<5 "co"

©

o
-J
CO

t-
o

3
CD o> "2 CM © C

' .n co "3 lO
CO CO

**
'E

TJ ^- S »1- £ c O) o « < CM «0 E co" o
«5
c C- O

c
p to
© fc o gs CO

or
a.
CO
>

2 k

2
i-
<
Q

o
£

t- ©

£ ©

(I) s: CO

a. £ «
|2£

0. Ü
O
Ü

<
DC

Q TO
< •£
a: w - E T3

5 © ©
< C 0)

* TO
g To
H TO

TO C

j__ ^^

CO j

D.
CO

3
S co ™ ^—" *
o *"" o E >-

£ 2 O
D

Ü
S ° w Ü CO i-

O S* O

ü •* o 0- CO CO o CO
© o •— c CO -J

Pr
oJ

Li

ne
s < o

CO w

CO|

—_

S
co_

CD c?
HI •£ CO

CN

00
I

CD

E
CD *-»

c (0

o Ü (0
1- o CD o ^^ _J E
§C0
o S

CO
0)

c

CO

CO
CO > o> '5.
c b E io" E

CO
I

■o

co 5

Ü 3

o
ü

CM

CO o Ü 3
Ü
0)

Ü o 3 2 o
a CD

3 CO
o

CO
c
V)

CM CO

CO
2
ü

CO
O
c Ü

o
c

"O
CD >»

u
CO

3 o c
CO _l !a

o> c aT CO E 0) o 3 00 o
o

■o o 1 ^r CD
CD JO •«- CD
3 CO ^, 5

JQ c
CO 0. 3

4-> k "^— E
C

_l
Q.

3 u.
o
Ü 3

2 4-1
o

•2»

<
CO
CO o <

Q.
O) s
j= CO CO
0)
3
o>

_c

Q.
E
o

s

c
o

<o
<D

O
O
_i
CO

<D
■D
3
O
c

■o
CD
w «2
CD o

ü k 3 CO C *; o c lO -« ro
■o
c JO 'E co"
CO CO Tfr ±Z CO

c
c
5 Q. 5 3 i=

E CD
53
re
CO c

1-
<

3
3

CO £
CO o

Q 3 -
5
1- 1-

Ü 3

CÖ •
m <S
CJ) t0m^t

£1
CO
1- ic*

2« "m CO

Ü s ° O Ü O
CO Q

"Ö* «0

<D <
I cb

_i
CO

CD "O ©
o 2 "5

m
CM

X Q. O
-J 3 E

ON m
I

CO

CONCLUSIONS

1. All translators had catastrophic failures during stress testing. The developers were very
responsive in fixing these translator deficiencies with an average turnaround of two working
days.

2. Most source code produced by the translators did not compile correctly without manual changes.

3. When using the translators a project will see an increase in the ratio of Ada to CMS-2 SLOC
counts from approximately 2:1 to 4:1 depending on the translator selected and the CMS-2
constructs being translated (See Table B-2, 14). The code expansion is due not only because of
differences in the two languages but also because during translation blank lines are inserted for
readability, in some cases error messages are generated as comments, and predefined packages
are produced.

4. Only the CCCC translator translated overlay. The correct execution of the translated overlays
was not verified.

B-40

APPENDIX C : RESULTS OF REENGINEER UNTIL ADA CODE
EXECUTES CORRECTLY

OVERVIEW

This section presents results of the Reengineer Until Ada Code Executes Correctly phase of the
evaluation. Versions of the translators used were the developers final revisions delivered after
problems causing translator failure were corrected. In this phase, the effort to take a CMS-2-based
program from translation to correct functional execution of the generated Ada version was measured
for each of the translators. These data were recorded as person-hours devoted to each stage of the
process and number of source lines of code added and modified.

It was noted that there was no baseline against which to compare the properties of translated code
and the effort required to reengineer it to execute correctly. A decision was made to generate such a
baseline and the resulting metrics were included with those of the translator-generated code. The
Reengineer Until Ada Code Executes Correctly phase of evaluation constitutes a small case study
of CMS-2 to Ada translation. The metrics obtained will assist CMS-2 project managers in generating
cost and schedule estimates for using automated CMS-2 to Ada translation.

The initial phase, Conduct Quick Look Inspection Using Small CMS-2 Sample, paved the way
for execution testing described in this appendix. Under Quick Look Inspection QA9 CMS-2 source
code was compiled, linked with a test harness, and executed to provide baseline execution results.
Then QA9 CMS-2 was translated by each translator and the generated Ada was repeatedly submitted
to the Ada compilers and reworked until it compiled.

Translator evaluation continued in the Reengineer Until Ada Code Executes Correctly phase.
The Ada QA9 source code was compiled, linked with the test harness, and executed. The Ada
harness was produced by reengineering the CMS-2 test harness, translating, and reengineering in
Ada. The Ada generated for QA9 was reengineered until execution produced results at least as
accurate as the CMS-2 execution results.

The QA9 program was taken from CMS-2 translation to correct execution in Ada for the seven
combinations of translators and compilers listed below. The APL and CCCC QA9 translations were
not taken to correct execution when compiled with VAX Ada due to a lack of time.

1. APL translation compiled with GNAT,

2. APL translation compiled with SunAda,

3. CCCC translation compiled with GNAT,

4. CCCC translation compiled with SunAda,

5. TRAD A translation compiled with GNAT,

6. TRADA translation compiled with SunAda, and

7. TRADA translation compiled with VAX Ada.

The QA9 program contains self checking arithmetic tests that compare computed with expected
results. Informational messages are printed when results do not match and summary information is

C-l

printed at the conclusion of program execution. Translators bracketed QA9 harness related direct
code inside Ada comments. No direct code was required for execution.

This appendix presents a high-level summary of the results of this phase. The section is intended
for managers considering translation as an aid to program generation.

Results include:
• Tables that show quantity of source lines of code at different stages of the reengineering

process
• Table that indicates the difficulty in conversion as measured by person-hours
• Table that indicates difficulty in conversion as measured by Ada source code

modifications required to achieve correct execution
• Discussion of redesign/rewrite of QA9 in Ada 95
• Tables that compare weighted McCabe cyclomatic complexity and program size for

CMS-2 and Ada versions of QA9.

Appendix F is a log containing details of the steps followed to achieve correct execution in Ada.
The intended audience is software engineers considering translation as a code generation method.
Appendix F includes a description of the source code corrections made for compilation and correct
execution.

LINE COUNT COMPARISONS

Table C-l contains line counts for QA9 as translated, compiled, and executed by the APL,
CCCC, and TRADA translators. Line counts include the predefined utilities which were produced or
provided by the translators and are required by all translated programs. The second row from the
bottom shows the line count for Ada 95 QA9, the redeveloped equivalent to QA9. There was a
substantial reduction in the number of lines of source code for Ada 95 QA9. QA9 CMS-2 line
counts are included for comparison purposes.

Table C-2 shows the line counts for the predefined utilities for QA9. The predefined utilities are
Ada packages that contain type declarations and functions used by the translated code. These line
counts are constant for all translations when using the APL and CCCC translators. The counts are
different for TRADA, since only what was required was produced.

C-2

Table C-1. QA9 Source Lines of Code by Translator at Various Stages (Includes Predefined)-!

Delimiting semicolons Comments Statements of text

QA9 Translated by APL

Translated 4650 5855 7570

Compilation with GNAT1 4856 6061 7776

Compilation with Sun Ada1 4856 6061 7776

Correct execution GNAT 4875 6484 8496

Correct execution Sun Ada 4874 6487 8498

QA9 Translated by CCCC

Translated 9632 1667 15657

Compilation with GNAT 9634 1669 15660

Compilation with Sun Ada2 9660 1675 15720

Compilation with VAX Ada 9631 1661 15653

Correct execution GNAT3 9653 1675 15712

Correct execution Sun Ada2 9660 1675 15720

QA9 Translated by TRADA

Translated 4725 2700 10227

Compilation with GNAT 4726 2719 10245

Compilation with Sun Ada 4726 2719 10245

Compilation with VAX Ada 4952 2866 10378

Correct execution GNAT 4948 3388 11348

Correct execution Sun Ada 4948 3388 11348

Correct execution VAX Ada 4952 2866 10245

QA9 Redesigned &

Rewritten in Ada 95*

1675 438 5879

QA9 CMS-2 3568 785 4326

1 Estimated counts because actual numbers were not kept
2 Includes modifications due to Sun Ada compiler bug (3 delimiting ; & 2 text statements)
3 Includes statements for debugging purposes (17 delimiting ; & 33 text statements)
4 Because of the design and evolution of this test code, great improvements could be made in code efficiency.
Reengineering of most legacy code is likely to result in substantial improvements, but perhaps not as dramatic as
achieved here.

C-3

Table C-2. QA9 Predefined Utilities Source Lines of Code by Translator

Delimiting
semicolons

Comments Statements of text

APL (BASIC_DEFNS) 317 165 642

CCCC (PREDEFINEDS) 1203 432 2022

TRADA (CMS-2 TYPES) 225 29 459

DIFFICULTY OF CONVERSION METRICS

Table C-3 shows the Difficulty of Conversion Hours metric for the APL, CCCC, and TRADA
translators. For each translator QA9 was taken from generation to correct execution using the
compilers indicated in this table. Difficulty of Conversion Hours is the sum of person-hours spent to
achieve compilation plus person-hours spent to achieve correct execution.

The authors had to decide whether to perform the conversion for each compiler from the original
translated code or to take the product of conversion using one compiler as input into the process of
conversion by the other. The thoroughness of the Ada standard makes it likely that a program
compiled by one compiler will compile with little or no modification by another. Following the first
approach would mean that the learning that would have taken place during conversion using one
compiler would shorten the time taken in the conversion process for another. This is because most
of the required corrections for the second conversion effort would be known ahead of time.
Following the second approach would mean that the second conversion would measure only the
incremental effort to get a correctly executing program to compile and execute using another
compiler. Since the first approach would be biased and would require duplicate effort, the second
approach using SLOC was followed.

Table C-4 shows the Difficulty of Conversion SLOC metric for the three translators. The method
used for computing SLOC and some problems involved in comparing SLOC metrics are described in
appendix D. The issue of how to count lines of code that are moved from one location to another
was resolved as counting each line moved as one change.

The APL translator had numerous Ada syntax and semantic errors. The most common error
encountered was with APL producing Ada code that contained floating point exponents. Type
casting these exponents to integer solved those problems but upon running QA9, 82 execution errors
were reported similar to the TRADA translator. This was because Ada 83 does not have sufficient
precision to pass the exponentiation test suite. The program was modified using Ada 95 which can
handle floating point exponents so later executions reported no errors.

C-4

Table C-3. QA9 Difficulty of Conversion Person Hours

Hours to achieve
compilation

Hours to achieve
correct execution

Difficulty of Conversion
Hours (Total)

APL

GNAT 9 18 27

Sun Ada 0 1 0

cccc
GNAT 1 2 3

Sun Ada 1 8 9

TRADA

GNAT 0 0 0

Sun Ada 1 0(6)1 1(7)1

VAX Ada 2 1 3

The CCCC translator assumed the existence of package "Math_Lib" which was presumed to
contain the appropriate exponentiation operator, but "Math_Lib" was not contained in the generated
code. Therefore, access to the an appropriate mathematical library was sufficient to remedy that
problem. The APL translator also relied on the existence of an exponentiation operator for a floating
point exponent but did not provide the operator. Although both the CCCC and APL implementations
were incomplete with respect to exponentiation, the assumption of a different exponentiation
operator, and the consequent difference in execution behavior is not incorrect.

The CCCC-generated code also presented an access-before-elaboration problem (see Section 5,
Recommendations to Translator Vendors) which was relatively difficult to analyze and represents
the majority of time consumed in converting the CCCC code.

Table C-4 indirectly reflects an ambiguity in the definition of "correct execution." The
modifications made to the TRADA-generated code to achieve execution with no errors reported by
the executing program were of two kinds. The first kind of modification was made to achieve
compilation on Sun SPARC platforms. Sun SPARC apparently does not support the specification of
a floating point type that was presumably supported on the CMS-2 targeted platform. The
modification was not required for execution on DEC VAXes and was not one of having generated
incorrect code. It was a portability problem. The second kind of modification was made because
TRADA generated code that only used Ada 83 standard mathematical functions. The QA9 test suite
was designed to detect errors in mathematical precision. Therefore, TRADA-generated code
executed correctly when it reported 82 execution errors because it correctly indicated that the Ada 83

1 The number in parenthesis is the time required to fully implement exponentiation with a floating point exponent.
These additional hours would not be required for conversion to Ada 95.

C-5

does not have sufficient precision to pass the exponentiation test suite. One can legitimately state
that the TRADA code was correct "as generated" and was also the most portable of the three
generated samples. Nevertheless, the program was modified to the point that when executed, it
reported no errors. Those difficulty of conversion data appear in parentheses in tables C-3 and C-4.

Access to an exponentiation operator for a floating point exponent was required for the TRADA-
generated code to achieve execution with no reported errors. This required 98 SLOC modifications
and was made by accessing package Ada.Numerics.Generic_Elementary_Functions for GNAT
compilation and by accessing the Sun Ada standard math library for the Sun Ada compiler.

The difficulty of conversion metrics, while meaningful, cannot simply be extrapolated on the
basis of SLOC to achieve a level-of-effort estimate for a legacy system. QA9, including harness,
contained no direct code or low-level operations necessary for execution, and was selected for this
study because its translation was thought to be feasible. It also has relatively simple requirements.
As a result, it is probably not representative of many legacy systems.

Table C-4. QA9 Difficulty of Conversion SLOC

APL

GNAT

Sun Ada

CCCC

GNAT

Sun Ada

TRADA

GNAT

Sun Ada

SLOC added or
modified for

compile

206

206

VAX Ada

SLOC added or
modified for correct

execution

225

224

281

281

0 (98)3

0 (98)3

Difficulty of Conversion
SLOC (Total)

431

430

30

37

6(104)3

4(102)3

WEIGHTED MCCABE AND PROGRAM SIZE METRICS

Table C-5 shows the weighted McCabe cyclomatic complexity
((Zj=l ..n(SLOCj*V(G)j))/(Zj=i..nSLOCi)) for the CMS-2 QA9 and the translator-generated Ada

1 17 lines were added for debugging purposes
2 3 lines were added to compensate for a bug in the Sun Ada compiler

5 The number in parenthesis is the SLOC required to fully implement exponentiation with a floating point exponent

C-6

QA9 programs. A discussion of this metric is found in Appendix D. The information in this table
and the information in Figure A-3 combine to yield important insight into the differences in amount
and distribution of control complexity between the three translators. As can be seen in Table C-5,
each translator-generated value for weighted V(G) is within 2% of the others. Figure A-3 shows that
the distribution of V(G) across subprograms is also very similar among translator-based QA9
programs. However, Table C-5 also indicates that the CMS-2 QA9 has substantially more
complexity than the translator-based QA9 programs. This difference is present because of a CMS-2
construct, procedure switch, that is counted as having higher complexity than its Ada counterpart,
the case statement. When this section of CMS-2 code was visually compared to its Ada counterpart,
its control structure appeared to be very similar.

Table C-5. QA9 Weighted McCabe Complexity Metric

QA9 Version Weighted McCabe Complexity
Metric

CMS-2 QA9 92 (343143/3733)1

Ada QA9 produced by APL 65 (235132/3594)2

Ada QA9 produced by CCCC 67 (234126/3500)

Ada QA9 produced by TRADA 66 (236813/3572)

Ada 95 QA9 Redesigned/Rewritten3 1.1 (1802/1677)

Table C-6, Program Size, shows another revealing aspect of the QA9 programs. This shows the
number of executable statements as measured by the CMS-2 source code Metrics Generator and by
Logiscope. In this case, the Ada version of QA9 with the largest number of executable statements
has fewer than 19% (3887-3297)/3297) more executable statements than the CMS-2 version. There
is more variability in Halstead program length than in executable statements, however, average
statement complexity (program length/executable statements) is relatively similar, with the Ada
programs at the extremes.

The data in Table C-5 and C-6, and in Figure A-2 and A-3 indicate that the CMS-2 ancestor and
the translator-generated Ada versions of QA9 are very similar in structure, content, and size. This
leads to the unremarkable but important implication that translator output will be very similar to
translator input in structure, content, and size.

1 SLOC counts used in CMS-2 calculation are straight lines of text. CMS-2 complexity is due to a large extend
because of a complex "if statement" in QA9A (QA9A V(G) = 194).
2 SLOC counts used in Ada are counted by Logiscope.
3 Because of the design and evolution of this test code, great improvements could be made in code efficiency.
Reengineering of most legacy code is likely to result in substantial improvements, but perhaps not as dramatic as
achieved here.

C-7

ADA 95 QA9: REENGINEERING A MIXED-MODE MATH TEST IN ADA 95

The decision to generate a baseline against which to compare the properties of translator-
produced code and the effort required to use translation was based primarily on three considerations.
The requirements were relatively simple and well-understood. The program, Ada 95 QA9, could also
be produced in a relatively short amount of time. Finally, the resulting program metrics would
provide an objective measure of the potential differences between redevelopment and translation.

Application redevelopment affords many opportunities for improvement during legacy system
migration via requirement-level reengineering, exploiting modem language features, and design for
reuse. Requirement-level reengineering in this case means reconsidering functionality in a CMS-2
application and generating a design and implementation that meets the requirements provided by that
functionality. Additional requirements may be put in place such as reducing potential maintenance
cost or improving performance. In this exercise an artificially-imposed new requirement was to
reduce potential maintenance costs as indicated by V(G) (McCabe cyclomatic complexity) and to
enhance reusability.

The CMS-2 QA9 program tests accuracy of certain mathematical operations and places an
emphasis on mixed-mode arithmetic. It tests various combinations of integer, real, and fixed point
operands and targets. Ada 95 QA9 framed the solution as the repetitive application of the
pattern opl = op2 infix-op op3 using three numeric types and five kinds of infix operations. Since
there are three different numeric types for each of the operands opl, op2, and op3, and five different
values for infix-op (i.e., +, -, /, *, **), the number of basic kinds of test cases is 135 (3 * 3 * 5 * 3).
However, since there is no available exponentiation (**) operator for fixed point types, 9 must be
subtracted from 135 to yield a total of 126 basic kinds of test cases. There must also be an accuracy
constraint on the result so that the pattern lower-bound <= opl <= upper-bound must also be a part
of the solution. Appendix H contains a more detailed explanation of the Ada 95 QA9 design.

As seen in Table C-5, the weighted McCabe complexity (V(G)) for the Ada 95 QA9 (1.1) was
less than 2% of the values for the translator-generated QA9 programs (65-67). Keep in mind that a
McCabe complexity greater than 50 is considered to be incomprehensible and less than 5 are
considered simple and easy to understand. The dramatic reduction was due to the approach taken for
test case selection and execution. The translator-generated QA9s used conventional if-then-else and
goto semantics. However, Ada 95 QA9 defined separate test cases as subclasses (using Ada 95
Object-Oriented capabilities) and relied on the Ada 95 run-time dispatcher for polymorphic
operations to select the appropriate subprogram (i.e., method) to execute for each test case. Ada-
ASSURED was also invoked to check conformance to Software Productivity Consortium (SPC) Ada
guidelines. There was 100% conformance with SPC guidelines.

Table C-6 also indicates a dramatic reduction in the number of executable statements required to
perform the test. An executable statement is statement between a "begin" and "end" that is not in a
declarative block. While the other QA9 programs did execute more test cases the comparison of
number of executable statements is still valid. This is because in Ada 95 QA9, the number of
executable statements is independent of the number of test cases executed. Halstead program length
and average statement complexity (executable statements/Halstead program length) is also given in
the table. Appendix D explains Halstead program length.

Thirty hours were required to develop Ada 95 QA9. This includes the time required for an
experienced Ada 83 developer to gain a sufficient understanding of the object-oriented features of

C-8

Ada 95. The Ada 95 QA9 experiment shows that significant improvements in certain indicators of
software maintenance cost can be obtained through redevelopment. However, many factors must be
taken into account when deciding what course of action to take with respect to a legacy system.
Redevelopment may be an appropriate choice under certain circumstances.

Table C-6. QA9 Program Size

Executable
Statements

Halstead
Program
Length

Avg. Statement
Complexity

CMS-2 QA9 3297 15609 4.73

APL 3642 14710 4.04

CCCC 3887 19547 5.03

TRADA 3759 22037 5.86

Ada 95 QA9 391 _i _i

CONCLUSIONS

1. The three translators studied are capable or nearly capable of generating Ada programs that
compile and execute correctly.2

2. All three translators produced versions of QA9 that were very similar in complexity, content, and
program size (executable statements, Halstead program length, average statement length).

3. The CMS-2 QA9 was very similar in complexity, content, and program size to the translator-
generated Ada versions.

4. The quality of generated output will be approximately the same as the CMS-2 input.

5. Only use effort metrics for making "ballpark" estimates of the effort required to translate a
CMS-2 system. This is true because of the small sample size (1), questions about the
representativeness of the QA9 application, and the uniquensss of each application. Person hours
must be adjusted upward to account for direct code, overlays, device dependent IO, and other
differences.

6. No significant difference in the difficulty to convert code was found between the three
translators.

1 Logiscope does not calculate Halstead metrics on Ada 95 source code.
2 This assessment did not address the difficulty of converting direct code, overlays, or device-dependent IO.

C-9

7. Ada 95 is a better translation target than Ada 83 for many reasons, one of which is the
availability of more mathematical functions.

8. Dramatic improvements in quality indicators through redevelopment are a possibility. This
option should be given serious consideration when maintenance cost is a significant concern.

C-10

DRAFT

APPENDIX D : METRICS INTERPRETATION

The purpose of this appendix is to provide an explanation of the metrics maintained during the
translator evaluation process. The outline below shows the metrics collected. Metrics are grouped
by intended use. Tools used to calculate metrics are included in parentheses.

• Characterize the CMS-2 Source Code
McCabe Cyclomatic Complexity (METRC)
Halstead Metrics (METRC)
Source lines of code (METRC)

Examine the quality of the Ada source code produced
McCabe Cyclomatic Complexity (Logiscope)
Halstead Metrics (Logiscope)
Software Productivity Consortium Ada quality and style guidelines (Ada-ASSURED)
Source Lines of Code (ASLOC)

Compare level of correspondence between the CMS-2 source and translated Ada,
McCabe Cyclomatic Complexity (METRC, Logiscope)
Halstead Metrics (METRC, Logiscope)
Source Lines of Code (METRC, ASLOC)
Translation Source Lines of Code Ratio

Examine effort
Person-hours
Difficulty of Conversion Hours
Difficulty of Conversion Source Lines of Code

This appendix provides an explanation of these metrics in the following order:
• McCabe Cyclomatic Complexity
• Halstead Metrics
• Source Lines of Code
• Software Productivity Consortium Ada Quality and Style Metrics
• Person-hours
• Difficulty of Conversion Hours
• Difficulty of Conversion Source Lines of Code
• Translation Source Lines of Code Ratio

D-l

MCCABE CYCLOMATIC COMPLEXITY

McCabe's cyclomatic complexity, V(G), is based on a graph theoretic interpretation of program
control flow and provides an indication of structural complexity. The graph of interest is the
decision-to-decision path or DD-Path graph (Jorgenson, 1995). A DD-Path graph depicts the paths
between decision points in a module or program. The formula for cyclomatic complexity
is V(G) = e - n + 2p, where e is the number of edges (arcs), n is the number of nodes, and/? is the
number of connected regions in the graph 1 . V(G) is equal to the number of linearly independent
circuits, or "basis paths," in a DD-Path graph. Figure D-l contains a short program, "paths," in
which V(G) = 4. The four basis paths depicted in the graph can be traced by visiting each of the
listed nodes in the stated order.

{1,2,3,4,1,5}

{1,2,3,1,5}

{1,2,1,5}

{1,5}

V(G) has important implications for effort required in path testing since all DD-Paths will be
tested if all the "basis paths" are covered. Since at least one test case must be constructed for each
basis path to be tested, path testing effort will be proportional to V(G) and "testing level." Two
examples of testing level are C], or DD-path testing, and Cjk, where each program path containing
up to k repetitions of each loop is tested (Jorgenson, 1995). For the program in Figure D-l, Cj
testing would require generation of a minimum or four test cases. The total number of paths in zero
to five iterations of the loop in program "paths" is 2j=0..5 (V(G)-1)J = 1074. It is also the number of
test cases that must be generated to meet a Cjk test requirement2 for k=5.

1 (Jorgenson 1995) notes that there is some confusion about the formula for V(G). The alternative formula
substitutes lp for the 2p term used here. However, that method adds an edge from the terminal node to the start
node, so, both versions yield the same result.

2 The formula only applies to this graph and is not a general equation for computing the number of cases for a
particular test requirement.

D-2

with procl, proc2, proc3, proc4; —
with Set Values; f
procedure Paths is [

A, B, C: Boolean; V
i Y\.

begin —
Set_Values(A, B, C);
while A loop — node 1

procl;
if B then — node 2

\ \ T2)
proc2;
if C then — node 3

proc3;
else — node 4

proc4;
end if; \ T3)
proc5;

end if;
end loop;

end Paths; — node 5
(4)

Ci) w

Figure D-1. DD-Path graph for paths program

V(G) is not without problems. V(G) would still be 4 for program "paths" even if the loop
statement were replaced by an ?/statement. The number of possible paths for the //"statement version
would be 4, but the number of possible paths for the loop statement version would be £j=0..5 @y for
up to j iterations of the loop. V(G) is related to, but not equal to the number of paths in a program.
Another problem with cyclomatic complexity is that it does not take data dependence into
consideration in the calculation of number of paths. If the following version of procedure
"SetJValues" were used by program "paths," all basis paths in the program would be feasible.

with Random;
procedure Set_Values

(A : out Boolean;
B : out Boolean;
C : out Boolean) is

K : Float := Random;
begin

A : = Boolean'val(K > 0.0 and K < 10
B : = Boolean'val(K > -1.0 and K < 1
C : = Boolean'val(K = 0.5);

end Set Values;

D-3

However, if the following version of procedure "SetJValues" were used, basis paths {1,2,3,4,1,5}
and {1,2,3,1,5} would be unreachable and would constitute sections of "dead code." The graph
depicting reachable sections of code is shown in Figure D-2.

with Random;
procedure Set Values

(A : out Boolean;
B : out Boolean;
C : out Boolean) is

K : Float := Random;
begin

A : = Boolean'val(K > 0.0);
B : = Boolean'val(K = 0.0);
C : = Boolean'val(K < 0.0);

Figure D-2. DD-Path graph for paths
program with unreachable code

end Set Values;

Empirical studies reveal that programs with
cyclomatic complexities less than 5 are generally
considered simple and easy to understand (Jones,
1991). A good rule of thumb for software
development projects is that modules with cyclomatic
complexities greater than 10 should be reexamined
for possible simplification and that values greater
than 20 indicate that serious scrutiny of the source is
required. Modules with cyclomatic complexities
greater than 50 are generally considered to be
incomprehensible. However, these are only guidelines and there are exceptions. For example, long
case statements yielding large values of V(G) can be simple to understand because of the inherent
mutual exclusivity of the cases. However, a comparable sequence of//statements may be harder to
comprehend because successive //statements are not inherently mutually exclusive. Mutual
exclusivity for //statements is data dependent. Such data dependencies may not be understandable
through examination of the local structure. In these cases cyclomatic complexity serves as a "red
flag" for potential understandability problems.

Per-module V(G) may be misleading when used to assess total program complexity. This is
because there may be many small modules with low values of V(G). The sum of V(G) for all
modules in a program is not a good indication of V(G) since a program with 100 modules of V(G)=1
has much simpler control-flow complexity than a program with a single module with V(G)=100. In
addition, average V(G) computed as V(G)avg=Zk^1^V(G)k/n is also slightly misleading. Programs
with many small modules of low cyclomatic complexity but with few large modules with relatively
high values of V(G) will yield a relatively small value for VfG)^, perhaps giving the impression
that the program is relatively simple. Consider the example of a program containing 25 modules of
one statement each with V(G)=l, and one module with 250 statements with V(G)=25. For this
program, V(G)avg=(25*l+l*25)/26^2. This value is well within the normally acceptable range.
v(G)avg considered in isolation obscures the fact that the majority of the source code statements in
this program are located in an area of high cyclomatic complexity.

D-4

Logiscope computes V(G)aVg. Average cyclomatic complexity weighted by lines of source code
is a more meaningful indication of program V(G). For example, let Q;be source lines of code for
module k and C7 be total source lines of code in a program. A weighted V(G) such as
V(G)wavg=Ik=i„n(V(G)k*Ck)/(Cf*n) would give a better indication of the total complexity in the
program. In the example above

V(G)wavg = (25*(l*l)+l*(25*250))/275 = 6275/275 * 23.

This report uses the weighted average McCabe metric rather than average.

The McCabe cyclomatic complexity metric addresses the following questions:

• What is the level of cyclomatic complexity of the CMS-2 source?

• Can CMS-2 source code with high cyclomatic complexity be translated into Ada?

• Is there a similar distribution of cyclomatic complexity between the CMS-2 input and the
generated Ada?

• How different or similar are the cyclomatic complexities of the outputs of the various
translators?

• How understandable is the generated Ada on the basis of cyclomatic complexity?

D-5

HALSTEAD METRICS

Three of the Halstead metrics are of use in comparing the input and output of the CMS-2
translators. They are program (or module) vocabulary size, program length, and volume (Halstead
1977).

Vocabulary size, r| (Greek eta), is total number of unique operators and operands in a program.

T| i: the number of unique operators

T|2: the number of unique operands

*1 = TII+TI2

Program length, N, is the total number of occurrences of operators and operands.

Nj: the total usage, or count of all occurrences of operators

N2: the total usage, or count of all occurrences of operands

N = Nj+N2

Program volume, V, can be thought of as the number of bits needed to represent a given program
in the main memory of a special-purpose computer designed to execute that program (Halstead &
Schneider, 1980). This is based on the observation that log2t| is the minimum number of bits
required to represent all of the individual elements of a program.

V = Nlog2(T) 1+T12) = Nlog2t|

Halstead developed other equations to predict such things as programming effort and number of
errors. However, those aspects of the theory are not particularly relevant to this evaluation. The
Halstead metrics used here describe the textual content and complexity of a program on a per-
subprogram basis. That is, comparisons based on these Halstead metrics between translator input and
translator output, and between translator outputs give a high level description of the textual
similarities between the various versions of the same program.

SOURCE LINES OF CODE (SLOC)

SLOC has been used historically as a means to understand program size. It has been valuable for
estimating complexity, costs, productivity, and many other programming metrics. There are a
number of problems with the "source lines of code" (SLOC) metric. No standards exist for counting
SLOC in any programming language. That makes it difficult to compare programs written in
different programming languages on the basis of SLOC. In addition, the amount of code produced
for the same specification written in the same programming language can differ by a factor of five
between programmers due to individual programming style (Jones, 1991). It is not clear that a
smaller or larger program is preferable. A smaller program may be more terse and have more
statement complexity. A larger program may be more readable, or may be less efficient. The SLOC
metric does not distinguish degrees of complexity, efficiency or understandability.

The CMS-2 SLOC is a count of three things: lines ending in '$', comment lines, and total lines
of text. The lines reported as "LOC" in the CMS-2 SLOC count were computed as the total number
of lines ending in '$' minus the number of comment lines. Comment lines were counted as lines in

D-6

which the word "comment" occupied character positions 11 through 17. The UNIX "grep" and "vi"
programs were used to count CMS-2 SLOC.

The Ada line counter also counts three things: non-embedded semicolons, comments, and lines of
text. The number of non-embedded semicolons is the count of all semicolons except those occurring
in comments and character strings. Comment lines were counted as lines which contained two
successive hyphens not embedded in a character string. SLOC counting in CMS-2 sample was line-
oriented in that each line of text was interpreted to be either a comment, an executable statement, or
a blank line. This was verified upon visual inspection of the Quick Look CMS-2 sample. Multiple
non-embedded semicolons may occur on the same line in Ada. In addition, comments and terminal
semicolons may be located on the same line of text in an Ada program. It is possible in Ada to have
the sum of the number of comments and SLOC exceed the total number of lines of text in a file of
Ada source code. The Ada line counter, ASLOC, that was written and used to count SLOC for this
translator evaluation is found in Appendix J.

SOFTWARE PRODUCTIVITY CONSORTIUM (SPC) METRICS

The SPC has developed a set of guidelines for Ada programmers to support the development of
high-quality, reliable, reusable, and portable software (Software Productivity Consortium, 1992).
Ada-ASSURED is an Ada source code processor that is a language-sensitive editor, programming
standards enforcer, and pretty-printer (GrammaTech, 1995). In the default configuration, its
standards enforcement capability is strongly related to the SPC guidelines. It takes Ada source code
as input and generates a new listing, formatted according to SPC guidelines, and including in-line
diagnostics that map to SPC guidelines. There is a many-to-many relationship between the Ada-
ASSURED diagnostics and the SPC guidelines. This is due to the fact that Ada-ASSURED operates
at the syntactic level and there is a many-to-many relationship between Ada syntax and SPC
guidelines.

The Quick Look Ada QA9 samples were processed with Ada-ASSURED. A number of
diagnostics relating to Ada-ASSURED violations were produced. In general, it probably is desirable
to change the offending sections of code associated with Ada-ASSURED violations so that they
comply with the SPC guidelines. However, this is not necessarily the case for translated code. In
general, the closer the translator output is to the input, the easier it is to verify correct translation.
There are two primary reasons for this. First, it is easier to understand the relationships between two
similarly structured programs. Second, there may also be test programs in the original language that
are candidates for translation. The closer the translated code is to the original code, the more likely it
is that the original test cases and procedures will be useful in testing the translated code. Once the
translated code is verified and tested, much can be gained by reengineering the code and applying
the SPC guidelines.

This section provides a discussion of the meaning of the Ada-ASSURED violations that were
encountered on the translator-produced Ada QA9 samples. (The reader is referred to Tables A-5
through A-8 for the number of occurences of these errors and for the exact statements that were
flagged.)

Ada-ASSURED violations are designated with "V" for violation and a number, n, which
identifies the violation. The violations produced for the Quick Look sample are discussed in the

D-7

following sections. Each violation is discussed in the context of SPC guidelines and implications for
testing and certification.

• VO: "The identifier/keyword <id> is used in context <contexf>" (GrammaTech, 1995).
Each occurrence of VO was due to the use of a "use clause". The presence or absence of
"use clauses" has no effect on source code structure. The SPC guideline from (SPC92 sec
5.7.1) is

Minimize using the "use clause"

Consider using the "use clause" in the following situations:
1. Infix operators are needed

2. Standard packages are needed and no ambiguous references are introduced
3. References to enumeration literals are needed

Consider the renames clause to avoid the "use clause"

Localize the effect of all "use clauses".

In the absence of a "use clause", qualified naming must be used to refer to all entities declared
outside the current scope. For example, if mam procedure Z, a client of package X, invokes
procedure Y of package X, all references to Y in Z must appear as "X.Y." In the presence of a "use
clause", references to Y in Z may appear simply as "Y." Qualified naming makes the source of the
identifier (e.g., Y) obvious (e.g., X.Y implies that Y is declared in X). The presence of the "use
clause" decreases program understanding because it obscures the origin of identifiers. This is why
many projects ban the "use clause" and may be why the SPC guidelines advise minimizing its use.

However, the "use clause" can eliminate a certain amount of clutter and unwieldiness in writing
and maintaining programs with server packages having long names. This is particularly true for
mathematically oriented programs. Ada provides programmers the capability to declare derived
versions of standard numeric types. Such declarations may be used to prevent errors such as adding a
variable for voltage to a variable for longitude. The operations on a derived type defined in a server
package, are not, by default, visible to clients of the package. In the absence of a "use clause" for the
server package, the required syntax for an infix operation for such a type is the same as for a
function call. The following infix operators for floating point types are affected-< <= = /=>=>
+, -, *, /, and **.

Figure D-3 depicts the case in which no "use clause" is used. It is quite cluttered in comparison to
Figure D-4 which has a "use clause". However, use of qualified naming in Figure D-4 makes the
origin of the declarations clear whereas the "use clause" has introduced ambiguity with respect to the
origins of the variables in Figure D-4.

D-8

with First_Long_Package_Name;
with Second_Long_Package_Name
procedure A83_Nu_Nr is
begin

First_Long_Package_Name.Sum
:= First_Long_Package_Name."+"(

First_Long_Package_Name.Gl, First_Long_Package_Name.G2);
end A83 Nu Nr;

Figure D-3. Procedure Accessing Global Variables without Renaming and without a "Use
Clause"

with First Long Package Name ;
use First Long Package Name;
with Second Long Package ; Name;
use Second Long Package Name;
procedure A83 U Nr is
begin

Sum : = Gl + G2;
end A83 U Nr;

Figure D-4. Procedure Accessing Global Variables with a "Use Clause"

The SPC recommendation to use renaming, presumably to allow normal infix format of
expression, has been obviated by the introduction of the Ada 95 "use type clause". Figure D-5 shows
an Ada 83 example of renaming the "+" operator. This gives the addition statement a more familiar
appearance and requires a rather lengthy renaming statement to achieve that effect. The addition
statement is still relatively cluttered due to the length of name of the server package. Figure D-6
shows an Ada 83 example of renaming the long server package name in addition to the "+"
operator. This results in a much simpler and unambiguous statement syntax through the addition of
four words.

with First Long Package Name;
procedure A83 Nu Ro is

function "+" (Left, Right : in First Long Package Name. Real)
return First Long Package Name Real

renames First Long Package_Name." +";
begin

First Long Package Name.Sum : =
First Long Package Name.Gl + First_Long _Package Name .G2;

end A83 Nu Re-

Figure D-5. Procedure Accessing Global Variables with a Renamed Addition Operator and
without a "Use Clause"

D-9

with First_Long_Package_Name;
procedure A83_Ro_Rc is

package Flpn renames First_Long_Package_Name;
function "+" (Left, Right : in Flpn.Real)

return Flpn.Real renames Flpn."+";
begin

Flpn.Sum := Flpn.Gl + Flpn.G2;
end A83 Ro Re;

Figure D-6. Procedure Accessing Global Variables with a Renamed Server Package and
Addition Operator and without a "Use Clause"

Figure D-7 illustrates use of the Ada 95 "use type clause" which provides direct visibility of a
type's operators. This has the same affect as renaming the "+" operator as depicted in Figure D-5.
Figure D-8 shows use of the "use type clause" in conjunction with package renaming. While it is not
as brief as Figure D-4 which uses the "use clause" it is unambiguous. However, it is relatively brief
and uncluttered compared to the other alternatives.

with First_Long_Package_Name;
procedure A95_Ut_Nr is

use type First_Long_Package_Name.Real;
begin

First_Long_Package_Name.Sum :=
First_Long_Package_Name.Gl + First Long Package Name.G2;

end A95 Ut Nr; - _ _

Figure D-7. Ada 95 Procedure Accessing Global Variables with a "Use Type Clause" and no
Renaming

with First_Long_Package_Name;
procedure A95_Ut_Rc is

package Flpn renames First_Long_Package_Name;
use type Flpn.Real;

begin
Flpn.Sum := Flpn.Gl + Flpn.G2;

end A95 Re-

Figure D-8. Ada 95 Procedure Accessing Global Variables with a "Use Type Clause" and with
a Renamed Server Package

Use of the "use clause" can decrease that part of the maintainer's cognitive load pertaining to
cluttered source code. This amount of the decrease is related to the length of the names of the server
packages. On the other hand, the "use clause" increases the part of the maintainer's cognitive load
pertaining to correct comprehension of the roles and relationships of the various packages
comprising a program. During maintenance, it is not sufficient to just correct, enhance, or add
functionality. It must be done without introducing unknown side effects to any other part of the
program. Use of the "use clause" makes this more difficult because it obscures the origins of
identifiers.

D-10

• VI: "A list with this many items must be a named association list." (GrammaTech, 1995).
There is no difference in code structure resulting from use of either positional or named
association. Each occurrence of VI was due to the use of an array aggregate. The SPC
guidelines referenced by VI are related to named association. (Software Productivity
Consortium, 1992) and aggregates (Software Productivity Consortium, 1992). The SPC
guidelines for named association do not mention aggregates. However, one of the
guidelines for the aggregates states "Use positional association only when there is a
conventional ordering of the arguments" (Software Productivity Consortium, 1992).
There is also reference to named association in the rationale section for aggregates which
states:

Aggregates can also be a real convenience in combining data items into a record or array
structure required for passing the information as a parameter. Named component association makes
aggregates more readable.

In this case, the Ada-ASSURED violation does not seem to indicate noncompliance with SPC
guidelines. The aggregates in question are array aggregates with integer indexes. As such, the
applicable guideline should probably be the one cited above applying to "conventional ordering of
arguments."

• V4: "Use of GOTO not allowed." V5: "Labels are not allowed" (GrammaTech, 1995).
Both of these violations reference (Software Productivity Consortium, 1992) "Do not use
goto statements." Loop, if, and case statements are what must be used to replace
GOTO..<label> pairs. There are combinations of GOTO...<label> pairs for which there
is no simple equivalent in goto-less programming. Eliminating GOTO statements in
translated code could increase required testing effort due to significant changes in code
structure.

• V7: "Nested loops must all be named." V8: "Exit statements from named loops must be
named." V10: "All BLOCKS must be named." V25: "A loop this long must be named."
There is no difference in code structure resulting from use or lack of use of loop, exit, or
block statement names. The applicable guidelines and portions of the rationales follow:

1. (Software Productivity Consortium, 1992): Associate names with loops when they
are nested.

When you associate a name with a loop, you must include that name with the
associated end for that loop (Department of Defense, 1983). This helps readers find
the associated end for any given loop ... The choice of a good name for the loop
documents its purpose.

2. (Software Productivity Consortium, 1992): Associate names with blocks when they
are nested.

When there is a nested block structure, it can be difficult to determine which end
corresponds to which block. Naming blocks alleviates this confusion.

3. (Software Productivity Consortium, 1992): Use loop names on all exit statements
from nested loops.

D-ll

An exit statement is an implicit goto. It should specify its source explicitly. When
there is a nested loop structure and an exit statement is used, it can be difficult to
determine which loop is being exited. Also, future changes which may introduce a
nested loop are likely to introduce an error, with the exit accidentally exiting from the
wrong loop. Naming loops and their exits alleviates this confusion.

• V12: "Non-constant object declarations are not permitted in the visible part of a package
specification." The applicable guideline is "Avoid declaring variables in package
specifications" (Software Productivity Consortium, 1992).

There can be a significant difference in source code structure between programs with and without
non-constant object declarations in package specifications. Moreover, it is unclear that any
significant benefit would be obtained by simply declaring access-subprograms for variables formerly
declared in a package specification. Compare Figure D-9 with Figure D-8 to see the stylistic
difference.

with First_Long_Package_Name;
procedure A95_Ut_Rc is

package Flpn renames First_Long_Package Name;
use type Flpn.Real;

begin
Flpn.Put_Sum(Flpn.Get_Gl + Flpn.Get G2);

end A95 Re; ~

Figure D-9. Ada 95 Procedure Using Access-Subprograms with a "Use Type Clause" and with
a Renamed Server Package

The guideline against declaring variables in package specifications is more meaningful in the
context of type and object managers. In those cases the operations on the type are carefully crafted
so that the objects can only be accessed in prescribed ways. Cohen (1996) has an example of a type
manager for "LengthJType" such that the multiplication operation returns a value of type
"AreaJType, " not "LengthJType." In his example, a variable of type "LengthJType" cannot be the
result type of a multiplication operation with operands of type "LengthJType." The constraints
imposed by this package design preclude certain types of programming errors. However, in the
context of translated code, conversion from the standard arithmetic approach to the type and object
manager approach constitutes a reengineering effort with potentially significant maintenance
consequences for the rest of the program.

• V17: "Subprogram body size of <n> exceeds maximum of <m>." There is no SPC
reference for this violation. However, a review by Banker (1993) of several studies the
optimum values of SLOC/module indicate that it is below the DoD's proposed standard
of 200 SLOC/module. Nevertheless, placing an upper limit on module (subprogram) size
for translator output could result in programs that were structurally dissimilar to the
original CMS-2 programs.

PERSON-HOURS

Person-hours metrics were kept to assist others who are considering translating project code.
This information may be useful in estimating the time and dollars required to perform translations.
Detailed person-hours were kept for the steps of the three phases of the translator evaluation process,

D-12

the steps of the preliminary work, as well as for general tasks. General tasks included metrics
collection, preparing and giving presentations, and writing the reports.

DIFFICULTY OF CONVERSION HOURS (DOCH)

This metric is calculated as

DOCH = HCC + HEC

Where HCC is hours spent modifying translated code until compiles correctly and HEC
is hours spent reengineering Ada code until executes correctly.

This metric was included for comparing the reengineering effort needed to move the translated
code to correct execution. It was intended primarily for comparing translators, but could also be
used for comparisons across compilers.

DIFFICULTY OF CONVERSION SLOC (DOCS)

This metric is calculated as

DOCS= SCC + SEC

Where SCC is SLOC added or modified until translated Ada code compiles correctly and
SEC is SLOC added or modified to reengineer Ada code until executes correctly.

This metric is very similar to DOCH. It was collected for the same purpose. This metric was kept
because of potential bias problems with DOCH. We felt that the software engineer would be
learning as he/she takes the translated Ada code produced by the three translators through the
Reengineer Until Ada Code Executes Correctly phase. The second set of translated Ada may be
completed faster than the first and the third faster than the second because of the learning
experience. We believe that DOCS is less biased.

TRANSLATION SOURCE LINES OF CODE RATIO

This metric is calculated as

Translation SLOC ratio = Ada SLOC : CMS-2 SLOC

It is used for comparing the size of the translator-produced Ada source with the corresponding CMS-2
code.

D-13

APPENDIX E : POTENTIAL FOLLOW-ON WORK

This appendix describes several translator evaluation tasks that could be done if additional time
and funding were available.

IMPROVE QUALITY OF TRANSLATED ADA SOURCE

This task would address methodologies, tools, and effort to convert correctly executing Ada code
to high quality, maintainable, Ada code. A key research activity could be to identify specific
reengineering tool requirements that would facilitate the use of translated Ada code. The current
research project has already identified some reengineering capabilities needed. Tool vendors may be
responsive to incorporating these requirements into their products once they are identified. Initial
requirements to support translation not normally satisfied by Ada reengineering tools include:

• Remove GOTO statements
• Remove dead code
• Convert global objects to local objects
• Eliminate subprogram call side effects to global variables
• Move type definitions and subprogram declarations to package bodies where appropriate

for information hiding
• Create meaningful types and object names
• Reposition code into packages

This task could begin at the completion of the third phase, Reengineer Until Ada Code Executes
Correctly. The quality of the translated Ada source code would be improved by using tools and by
making manual changes. Ada source code produced by translators mirrors the CMS-2 code and
does not take advantage of Ada typing, packaging, exception handling, and useful software
engineering capabilities offered by Ada and Ada 95. The source code produced needs to be brought
into conformance with the "Ada Quality and Style Guidelines for Professional Programmers,"
(Software Productivity Consortium, 1992).

Tools that would assist in the quality improvement of the Ada source code need to be identified,
obtained, and installed. Some of these tools identify problems and others can automatically fix
them. Some of these tools were already used during the evaluation to assess quality (Table L-l).

Other potentially useful tools to be considered for this task are described in Table L-2. Others
need to be identified.

This source code quality improvement task includes the steps listed below. This task could start
with an Ada version of QA9 or another translated sample.

• Examine the quality of translated and correctly executing Ada/Ada 95 sample using tools
Candidate tools include: Ada-ASSURED, AdaMat, and Logiscope. Much of this has
already been done under the translator evaluation.

• Experiment with existing Ada quality improvement tools

E-l

Tools include: Rational's Reengineering Toolkit, Xinotech's Composer and
Xinotech's prototype Object Extractor, and Ada-ASSURED. Feedback would be
provided to tool developers for improvements.

Make manual code improvement changes that existing tools cannot handle
We expect that these changes would include removal of GOTO statements, elimination
of dead code, pushing scoping to appropriate level, partitioning code into packages,
replace translated identifiers that are usually related to the eight character CMS-2
names, by more meaningful identifiers, and others. A product of this step would be
specific recommendations to tool developers for new automated capabilities for Ada
source code quality improvement.

Experiment with new Ada documentation tools
These tools include CCCC's Hyperbook and I-DOC, a prototype tool developed by the
University of Southern California with DARPA funding. Feedback would also be
provided to developers for tool improvement.

Reexamine quality of Ada code using tools
The quality of the enhanced Ada/Ada 95 code would be re-measured using tools and
compared with translated code from the initial step.

EXAMINE PERFORMANCE OF EXECUTING ADA COMPONENTS

This task would compare the performance of three translations and one redesign/rewrite of a
portion of an existing CMS-2 system. The translations are correctly executing Ada 95 programs
produced by the APL, CCCC, and TRADA translators and the fourth is a manual redesign/rewrite in
Ada 95 of the CMS-2 components. Comparisons of executable size, memory usage, and run-time
performance would be made. Executable size comparisons can be easily done while memory and
timing measurements are considerably more difficult. A manageable size operational CMS-2
project would be selected for the performance comparison. QA tests would not be used. MK-2 is a
candidate sample.

EVALUATE OTHER TRANSLATOR CAPABILITIES
• Test the overlay capability of the CCCC translator using MTASS QA3 and QA60. Both

are self checking tests that use a test controller.

E-2

APPENDIX F : RECORD FOR REENGINEER UNTIL ADA CODE
EXECUTES CORRECTLY

This appendix is intended to assist software engineers who plan to use the translators. It is a log
containing the details of the steps followed to achieve correct execution in Ada. QA9 was taken to
valid execution following translation by the TRAD A, CCCC, and APL translators. Logs are
provided for the following combinations of translators and compilers:

QA9 TRADA VAX Ada

QA9 TRADA Sun Ada

QA9 TRADA GNAT

QA9 CCCC GNAT

QA9 CCCC Sun Ada

QA9 APL GNAT

QA9 APL Sun Ada

The exact compilation and execution errors and fixes are included.

TRADA - REENGINEERING RECORD FOR VAX ADA

1. Made minor corrections to test harness adding additional I/O capabilities.

TRADA - REENGINEERING RECORD SUNADA COMPILER

1. A monolithic file was created from separate TRADA files/packages for handling convenience.
This big file was broken down into small files. A TRADA summary file provided the
compilation order.

This split the monolithic file into the following files with one file per compilation unit.

CMS_2_types.a
Qa9e.a
Qa9d.a
Qa9c.a
Qa9b.a
Qa9a.a
Start.a
Dryver.a

F-l

Aqtcon.a
Major_header.a
CMS_2_types_b.a
Undefined_extrefs.a
Qsysddla.a
Qa9qlook_b.a
Aqtcon_b.a
Dryverb.a
Undefmed_extrefs_b.a
Qa9a_b.a
Qa9b_b.a
Qa9c_b.a
Qa9d_b.a
Qa9e_b.a
Start_b.a

Generate compilation script:

arg db-p-If files
asg compile files -luada \-v \-!E u

2. Compilation

source compile

/homel/users/oIlerton/cms2ada/tradada/vads_qa9/CMS_2_types.a, line 160, char
40:error: RM 3.5.7(12): cannot select predefined type: range too big
/homel/users/ollerton/cms2ada/tradada/vads_qa9/CMS_2_types.a, line 162, char
15:error: RM 3.5.7(12): cannot select predefined type: digits too big

Requested range of floating point type exceeded platform limitations. Make the following change
to remedy the problem.

F-2

— + Bob Ollerton, June 21, 1996
— + Sun Ada 1.1 (j)
— + RM 3.5.7(12): cannot select predefined type: range too big.
— + NOTE: 8#0.77777777* is the closest octal rep of n <= 1.0.
— + There are two floating point representations for SunAda. One
— + has 6 digits, and a maximum binary exponent (SAFE_EMAX) of 125,
— + and the other has 15 digits with SAFE_EMAX = 1021. So, both of
— + these declarations should have exponents of SAFE_EMAX.

— + TYPE Float_s
— + IS DIGITS 7
— + RANGE -8#0.77777777* * 2.0 ** 1023 .. 8*0.77777777* * 2.0 ** 1023;
— +TYPE Float_d
— + IS DIGITS 16
— + RANGE -8*0.7777777777777777776*
— + * 2.0 ** 1023 .. 8*0.7777777777777777776*
— + * 2.0 ** 1023;
TYPE Float_ss
IS DIGITS 7;

TYPE Float_S is DIGITS 7 RANGE
-8*0.77777777* * 2.0 ** Float_ss'Safe_Emax ..
8*0.77777777* * 2.0 ** Float_ss'Safe_Emax;

TYPE Float_d
IS DIGITS System.Max_Digits;

3. Recompilation, link
source compile
No compilation or link errors

4. Execute Qa91ook.

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 82

5. Execution errors all appear to be due to explicit conversion of a fixed or floating point exponent
to an integer. Only integer exponents are available within the Ada 83 standard math operations.
Access to other types of exponentiation operators will require access to a math library offering
those capabilities. The following code fragment is typical of part of an exponentiation test.

— Exponent converted to Ada integer
— QA9 0151 SET VAWS9 TO VAWS6**VFD1 $

Qsysddla.Vaws9 :=
T_32_s_9 (Float_43 (Qsysddla.Vaws6) ** Integer

(Qsysddla.Vfdl));

F-3

Explicit type conversion is used extensively in the 82 exponentiation tests. In this particular case,
function T_32_s_9 returns a value of type Cms_2_Types. A_32_s_9, which is a fixed point type.
Qsysddla.Vaws6 and Qsysddla.Vfdl are also of type Cms_2_Types.A_32_s_9. However,
Qsysddla.Vaws6 is explicitly converted to type Cms_2_Types.Float_43 and Qsysddla.Vfdl is being
converted to type Integer. The conversion of the exponent to integer has the dramatic effect on
precision that could account for the 82 errors.

There is a straightforward and tedious approach to remedying this problem. First, we assume that
all of the problems are due to insufficient precision resulting from conversion to an integer exponent
and that the problem will be remedied by changing all such instances to conversion to a floating
point exponent. This will necessitate other conversions as well. However, examination of package
CMS_2_Types reveals that all six floating point types now have the same precision and underlying
representation as the predefined type Float. That being the case, we can use the SunAda Math."**"
function and explicitly convert the operands to and from the standard type Float. The code fragment
shown above could then become:

—+++++++++++
— Exponent converted to Ada integer
— Changed by Bob Ollerton: 6/21/96
Qsysddla.Vaws9 :=

T_32_s_9 (Float_43(Float(Qsysddla.Vaws6) ** Float
(Qsysddla.Vfdl)));

This technique must be applied in all cases except for the case in which the test is designed to test
x**n, where n is of type integer.

6. Recompilation, link

source compile
No compilation or link errors

7. Execute Qa9Iook.

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 0

F-4

TRADA - REENGINEERING RECORD FOR GNAT COMPILER

1. Take SunAda source as a starting point.

Produce package Math as an instantiation of Ada.Numerics.Generic_Elementary_Functions.

with Ada.Numerics.Generic_Elementary_Functions;
package Math is new

Ada.Numerics.Generic_Elementary_Functions(Float) ;

2. Split into files and generate compilation order

gnatchop -s SRC

3. Compilation, link and bind

sh SRCsh -gnato
gnatmake qa9qlook

No errors

4. Execute qa91ook.

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 0

F-5

CCCC - REENGINEERING LOG FOR GNAT COMPILER

1. Concatenate

cat PREDEFIN.ADA QA9QL.ADA » SRC

2. Split into files and generate compilation order

gnatchop -s SRC

3. Compilation

sh SRC.sh -gnato

The "-gnato" qualifier enables range and elaboration checks.

cms2_to_ada_predefined.adb:6:06: file "mathjib.ads" not found
compilation abandoned
mathjib_cms2.ads:2:06: file "mathjib.ads" not found
compilation abandoned
qa9qlook.adb:6:08: file "mathjib.ads" not found
qa9qlook.adb:6:08: "QA9QLOOK (body)" depends on "MATH_LIB_CMS2 (spec)"
qa9qlook.adb:6:08: "MATH_LIB_CMS2 (spec)" depends on "MATHJLIB (spec)"
compilation abandoned

This identified a dependency on mathjib.ads which was not part of the distribution.

This is a generic math library with a generic formal parameter named "real."

with mathjib;
package mathjib_cms2 is new mathJib(real=>float);

Fix: Substitute Ada.Numerics.Generic_ElementaryJunctions in Ada 95 ARM A.5.1

for mathjib.

—with math_lib;
—package math_lib_cms2 is new math_lib(real=>float);
with Ada.Numerics.Generic_Elementary_Functions;
package math_lib_cms2 is new

Ada.Numerics.Generic_Elementary_Functions(Float);

F-6

4. Recompilation

No remaining compilation errors, the following warnings were issued:

qa9qlook.adb:694:09: warning: "LX2" is never assigned a value
qa9qlook.adb:695:09: warning: "LX3" is never assigned a value
qa9qlook.adb:833:09: warning: "LX1" is never assigned a value

5. Construct driver program "qa9" to call Qa9qlook.Dryver.Driver.

procedure Qa9 is
begin

Qa9qlook.Dryver.Driver;
end Qa9;

6. Compile, link, bind. No Errors.

7. Run qa9. Execution output

raised PROGRAMJERROR

8. Due to previous experience, assume that the exception was due to

"access before elaboration."!

There are two functions in package QA9QL.QSYSDD1 A that are called before

their bodies are elaborated:
FUNCTION TV10H_item_address_access_init RETURN TV10H_item_pointer;
TV10H_data : TV10H_item_pointer:=TV10H_item_address_access_init ;
FUNCTION TV16D_item_address_access_init RETURN TV16D_item_pointer;
TV16D data : TV16D item pointer:=TV16D_item_address_access_init ;

1 The QA9 test suite for the AN/UYK-7 was input the CCCC translator by mistake. It was during that reengineering
effort that the source of the programerror exception was identified. It was pinpointed by compiling the sample with
the Alsys compiler and running it in the Alsys debugger. This became quite time-consuming since the required math
library, which is normally part of the Alsys distribution, was either missing or was not properly installed. Since the
Alsys compiler was no longer under maintenance, we were unable to get technical support to assist us in accessing
the library. The problem was overcome by using the Ada math library provided on the Walnut Creek CD-ROM. It
enabled us to pinpoint the source of the programerror exception, but other run-time errors resulted. Eventually, we
discovered that some of functions in the math libraries from the Walnut Creek CD-ROM were yielding incorrect
results. Use of those libraries was discontinued. Since we neither looked for nor read any documentation on the
Walnut Creek CD-ROM math libraries, we are not in a position to state that they are faulty. We may not have used
them in the intended manner and can only state that they sometimes yielded incorrect results in the manner in which
we used them.

F-7

One approach to fixing this problem is to initialize TV10H_data and

TV16D_data in the initialization code of the body.

The following changes were made to the specification of QA9QL.QSYSDD1A:

__ ***** ***** changed by Bob Ollerton 8/4/96 ***** *****
FUNCTION TV10H_item_address_access init
RETURN TV10H_item_pointer ;
TV10H_data : TV10H_item_pointer; —:=TV10H_item_address_access_init

FUNCTION TV16D_item_address_access init
RETURN TV16D_item_pointer ;
TV16D_data : TV16D_item_pointer; —:=TV16D_item_address_access_init

__ ***** ***** ***** ***** ***** ***** ***** ***** *****

The following was added to the body of QA9QL.QSYSDD1A:

— ********* Acjded by Bob Ollerton 8/4/96 ********
begin

TV10H := TV10H_item_address_access_init;
TV16D := TV16D_item_address_access init; — ********* ********

END QSYSDD1A ;

9. Recompilation

No remaining compilation errors, the following warnings were issued:
qa9qlook.adb:694:09: warning: "LX2" is never assigned a value
qa9qlook.adb:695:09: warning: "LX3" is never assigned a value
qa9qlook.adb:833:09: warning: "LX1" is never assigned a value

10. Runqa9.

Results => no visible behavior.

Modify the program to output an indication of which parts of the program execute.

a) Write and Compile procedure Write.
use Ada.Text_Io;
procedure Write

(Msg : in String) is
begin

Put_Line("=» " & Msg);
end Write;

F-8

b) Insert calls to Write at strategic places in Qa9qlook.Dryver.Driver;

 *■***■*■**•*•***********■*■*** * Added bv Bob Ollerton ******************
with Write;

— ************************ Added by Bob Ollerton

WITH cms2_to_ada_predefined ;
USE cms2_to_ada_predefined ;
WITH UNCHECKED_CONVERSION ;
WITH SYSTEM ;

PACKAGE BODY DRYVER IS
PROCEDURE DRIVER IS
BEGIN

Write("calling Start")
START ;
Write("calling QA9AA")
QA9A ;
Write("calling QA9AB")
QA9B ;
Write("calling QA9AC")
QA9C ;
Write("calling QA9AD")
QA9D ;
Write("calling QA9AE")
QA9E ;
Write("calling QTSYNOPS");
QTSYNOPS ;
Write("calling CMS2_EXEC");
CMS2_EXEC (8) ;
Write("done!");

END DRIVER ;
END DRYVER ;

F-9

c) Insert calls toWrite in function TV1 OH_item_address_access_init and
TV16D_item_address_access_init

BEGIN
Write ("calling TV10H_item_address_access_init");

Write("returning from TV10H item address access init");
END

BEGIN
Write("calling TV16D_item_address_access_init");

Write("returning from TV16D item address access init");
END

12. Compile qa9qlook.adb. Success.

13. Bind and Link qa9

14. Execute qa9.

Results are as desired. Output indicates that all routines were called.

=>> calling TV10H_item_address_access_init
=>> returning from TV10H_item_address_access_init
=>> calling TV16D_item_address_access_init
=» returning from TV16D_item_address_access_init
=>> calling Start
=» calling QA9AA
=» calling QA9AB
=» calling QA9AC
=» calling QA9AD
=» calling QA9AE
=» calling QTSYNOPS
=» calling CMS2_EXEC
=>> done!

F-10

CCCC - REENGINEERING RECORD FOR THE SUNADA COMPILER

Code reengineered for GNAT was used as a starting point

1. There is no standard math library for Ada 83, so attempted to use package Math from Verdixlib.
Assume that the only operation required from the Math library is exponentiation with floating
point exponent. Develop and compile the following package.

with math;
package math_lib_cms2 is

function "**"(left, right: Float)
return Float renames Math."**";

end math_lib_cms2;

2. Concatenate the following packages together into one file called SRC:

cms2_to_ada_predefined.adb
cms2_to_ada_predefined.ads
math_lib_cms2.ads
qa9.adb
qa9qlook.adb
qa9qlook.ads
write.adb

cat *.ad* > SRC

3. Split the files apart using the Ada PRImitive Compilation Tool (Apricot) and

generate a compilation script.

apricot SRC db -s
arg db-p-If files
asg compile files -luada \-v \-!E u

4. Execute the compilation script.

source compile

F-ll

5. Compilation errors.

Package cms2_to_ada_predefined.ads contains a reference to type "longfloat" on line

342. This is not a predefined type in Ada 83. Ada 95 provides compiler implementors

the option of including the definition of longfloat in package standard as a

predefined type (ARM 95 3.5.7.16-17).

function long_flt_image(r: in longfloat) return string;

6. Fix: Precede the declaration of long_flt_image in package cms2_to_ada_predefined with the
following subtype declaration:

subtype longfloat is float;

7. Compilation errors.

********************** cms2_to_ada_predefined_b.a

459: field_h_proc_x(float_to_bit(value),bstart,blength,dest_word);
A A

A:warning: RM 13.10.2(2): operand is bigger than target
479: return bit_to_float(field_h_fcn_x(source_word,bstart,blength));

A *
A:warning: RM 13.10.2(2): operand is smaller than target
525: meu_table_word_proc_x(float_to_cms2word(value),

A A

A:warning: RM 13.10.2(2): operand is bigger than target
536: meu_table_word_proc_x(

A A

A:internal: assertion error at file il_code.c, line 181
/homel/users/ollerton/cms2ada/cccc/large/cms2_to_ada_predefined_b.a,
line 459, char 22:warning: RM 13.10.2(2): operand is bigger than target

/homel/users/olIerton/cms2ada/cccc/large/cms2_to_ada_predefined_b.a,
line 479, char 14:warning: RM 13.10.2(2): operand is smaller than target

/homel/users/ollerton/cms2ada/cccc/large/cms2_to_ada_predefined_b.a,
line 525, char 29:warning: RM 13.10.2(2): operand is bigger than target

/homel/users/ollerton/cms2ada/cccc/iarge/cms2_to_ada_predefined_b.a,
line 536, char 7:internal: assertion error at file il_code.c, line 181

F-12

8. The compilation error on line 536 is not a compilation error as such. It is a message stating that
the compiler has crashed. The relevant code fragment is properly constructed:

procedure meu_table_word_proc(value: in string;
size_diml: in integer;
size_dim2: in integer;
array_addr: in address) is

function bit32_to_cms2word is new unchecked_conversion
(source=>bit_string_32, target=>cms2_word);

begin
—536

meu_table_word_proc_x(
bit32_to_cms2word(string4_to_bit32(pad(value, 4))) ,
size_diml, size_dim2, array_addr);

end meu_table_word_proc;

Past experience has shown that Verdix compilers are sensitive to complex

expressions. We will attempt to simplify the expression.

procedure meu_table_word_proc(value: in string;
size_diml: in integer;
size_dim2: in integer;
array_addr: in address) is

function bit32_to_cms2word is new unchecked_conversion
(source=>bit_string_32, target=>cms2_word);
Target : cms2_word;
Str4 : constant String4 := Pad(value, 4);
Bs32 : constant bit_string_32 := string4_to_bit32(Str4);

begin
Target := bit32_to_cms2word(Bs32) ;
meu_table_word_proc_x(Target, size_diml, size_dim2, array_addr);

end meu table word proc;

9. Compiler errors: None. Compiler warnings:

************************ cms2 t0 ada_predefined b.a

459: field_h_proc_x(float_to_bit(value),bstart,blength,dest_word);
A *
A:warning: RM 13.10.2(2): operand is bigger than target
479: return bit_to_float(field_h_fcn_x(source_word,bstart,blength));

A A

A:warning: RM 13.10.2(2): operand is smaller than target
525: meu_table_word_proc_x(float_to_cms2word(value),

A *
A:warning: RM 13.10.2(2): operand is bigger than target

F-13

10. Link and bind. No errors.

11. Execute qa9. Success.

=» calling TV10H_item_address_access_init
=» returning from TV10H_item_address_access_init
=» calling TV16D_item_address_access_init
=» returning from TV16D_item_address_access_init
=» calling Start
=» calling QA9AA
=» calling QA9AB
=» calling QA9AC
=» calling QA9AD
=» calling QA9AE
=» calling QTSYNOPS
=» calling CMS2_EXEC
=» done!

F-14

APL - REENGINEERING RECORD FOR GNAT COMPILER

1. Compilation

gnatchop -s COMP
sh COMP.sh -gnato

A list of compilation errors is shown in Appendix A

2. Reengineering
A list of compilation error fixes is shown in Appendix A.

3. Execute Qa9qlook

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 82

4. Execution errors all appear to be due to explicit conversion of a fixed or floating point
exponent to an integer. Only integer exponents are available within the Ada 83 standard
math operations. Access to other types of exponentiation operators will require access to
a math library offering those capabilities. Instantiating the package
Ada.Numerics.Generic_Elementary_Functions in Ada 95 which has the capabilities to
handle floating point exponents solved the problem.

with Ada.Numerics.Generic_Elementary_Functions;
package ft is new Ada.Numerics.Generic_Elementary_Functions(Float);

5. Compilation, link and bind

sh COMP.sh -gnato
gnatmake qa9qlook

F-15

6. Execute Qa9qlook

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 0

APL - REENGINEER RECORD FOR SUN ADA COMPILER

The GNAT compiled APL source code was taken as the starting point.

1. There is no standard math library for Ada 83, so attempt to use package Math from Verdixlib.
Assume that the only operation required from the Math library is exponentiation with floating
point exponent. Add the following line to the body.

with math;
use math;

2. Comment out the following lines from the GNAT code.
—with ada.numerics.generic_elementary_functions;
—package ft is new
ada.numerics.generic_elementary_functions(float) ;
— use ft

3. Compile the spec and body of basic_defns and qa9qlook.

4. Compile and link the driver.

5. Execute Qa9qlook

SUMMARY OF ERRORS

EXECUTED - 345

NO TESTS ACCOUNTED- 0

EXECUTION ERRORS - 0

F-16

APPENDIX G : PERSON-HOURS

This appendix contains person hours spent doing
• Preliminary tasks
• Quick Look tasks
• Stress Testing tasks
• Reengineering tasks
• Other tasks

Table G-1. Hours Performing Preliminary Tasks -1

TASK HOURS COMMENTS

1. Prepare / maintain plan 388

2. Identify NRaD computers

a. SPARC 10/OS 4.1.3

b. VAX 11/785 VMS 5.5-1

c. PCMSDOS6.22

1

2 Reload accounts and set up access

0

3. Identify, collect, install, and
learn CMS-2 source code
analysis tools (VAX & PC)

a. METRICS generator

b. DESIGN analyzer

1 Revision 6.2

1 Revision 6.1

G-l

Table G-1. Hours Performing Preliminary Tasks - 2

TASK

4. Identify collect, and install
CMS-2 source files to be
translated

HOURS

5. Identify, collect, install, and
leam Ada metrics tools

a. SLOC counter 6

b. Logiscope 0

c. Ada-ASSURED 0

6. Install, obtain, and learn Ada
compilers

a. GNAT version 3.05 10

b. VAX version 2.2-38 1

c. Sun version 1.1 0

COMMENTS

a. MTASSQA files 9

b. ELF project 7

c. MK-2 project 7

d. S3-TMP project 11

e. SPY project 7

f. H60B project 331

Includes writing Ada line counter.

Already installed and learned

Already installed and learned

reestablish compiler is up and available

There were problems reading H60B tapes and with ftp transfers of H60B files.

G-2

Table G-1. Hours Performing Preliminary Tasks - 3

TASK HOURS COMMENTS

7. APL translator

a. Obtain and install

b. Learn/ receive training

4

14 Developer says all constructs translate

8. CCCC transformer

a. Obtain and install 16

b. Learn/ receive training 39 Listed in user guide section 7

9. TRADA translator

a. Obtain and install

b. Learn/ receive training

7

2 Listed in user manual section 3.8

G-3

Table G-1. Hours Performing Preliminary Tasks - 4

TASK HOURS COMMENTS

10. Assembler Design Extractor
(low to high level)

a. Obtain and install 2

b. Learn/ receive training 2

11. Determine metrics to be 34
collected during evaluation
process

T0TAI- 607 Hours for preliminary tasks

G-4

Table G-2. Hours Performing Quick Look Inspection Tasks • 1

TASK HOURS COMMENTS

1. Compile, Link, and Execute
selected CMS-2 sample.

Large AN/UYK-43 automated & self-
checking arithmetic test, 430QA9, selected.

a. Adapt QA9 to INCLUDE

SYS_DD and TC directly

14 SYS-DD previously used as a compool, an
the test controller, QTCON, added at link
time.

b. MTASS compile, link,

and execute

57 Reestablish QA testing COMmand files and
logicals.

c. Analyze execution results 4 Executes in SIM43 - 346 tests, 20 expected
errors in exponentiation section QA9A.

2. Gather CMS-2 source code
metrics.

a. Get SLOC, keywords &
complexity metrics

2 Used CMS-2 source code METRICS
generator.

3. Translate to Ada

a. APL translator <1

b. CCCC transformer

c. TRADA translator

4

2

SPYLOOP was used for CCCC and
TRADA as a small sample before translating
the much bigger QA9

4. Run Ada metrics generator
for SLOC.

a. APL translator 1 SLOCs may be seen in Figure A-1

b. CCCC transformer 1

c. TRADA translator 1

G-5

Table G-2. Hours Performing Quick Look Inspection Tasks - 2

TASK

5. Compile Ada samples
produced by translators.

a. APL compile by GNAT

b. APL by Sun Ada

c. CCCC by GNAT Ada

d. CCCC by VAX Ada

e. TRADA by GNAT

f. TRADA by VAX

HOURS COMMENTS

<1

<1

0

3

0

2

These hours include times to prepare
command files and compilation time

6. Modify/ reengineer Ada as
needed to achieve successful
compile.

a. APL compile by GNAT

b. APL by Sun Ada

c. CCCC by GNAT Ada

d. CCCC by SUNAda

e. CCCC by VAX

e. TRADA by GNAT

f. TRADA by Sun Ada

g. TRADA by VAX

9

0

1

1

4

0

1

2

CCCC transformer corrected to achieve
clean Ada

G-6

Table G-2. Hours Performing Quick Look Inspection Tasks - 3

TASK HOURS COMMENTS

7. Examine successfully
compiled Ada code using
Logiscope and Ada line counter.

a. APL compile by GNAT

b. APL by Sun Ada

c. CCCC by GNAT Ada

13

<1

13

The Logiscope statistics (Halstead and
McCabe) are only reported when using
GNAT. These statistics are virtually identical
for all three compilers.

d. CCCC by Sun Ada <1

e. CCCC by VAX Ada <1

f. TRADA by GNAT 13

g. TRADA by Sun Ada <1

h. TRADA by VAX <1

TOTAL 150 Hours for Quick Look tasks

G-7

Table G-3. Hours Performing Stress Testing Tasks -1

TASK HOURS

1. Prepare CMS-2 test cases

COMMENTS

&s

2.APL Translator

a. Build COMmand file 6

b. Translate files 5

c. Gather metrics for 8

translator failures

d. Compile gener. Ada VAX 12

Sun 5

GNAT

Subtotal

4

40

All 84 QA files modified to use INCLUDE
directive to include Test Controller (QTCON
& SYSDD)

3. CCCC Transformer

a. Build COMmand file 30 CC(

b. Translate files 134

c. Gather metrics for 24 sup

translator failures

d. Compile gener. Ada VAX 16

Sun 7

GNAT

Subtotal

6

217

CCCC STRESS.COM series

supporting data for CCCC corrections

G-8

Table G-3. Hours Performing Stress Testing Tasks - 2

TASK HOURS COMMENTS

4. TRADA Translator

a. Build COMmand file 35 TRADA_STRESS.COM series, and shell

b. Translate files 69
scripts

c. Gather metrics for 16

translator failures
supporting data for TRADA corrections

d. Compile gener. Ada VAX 24

Sun 5

GNAT 4

Subtotal 153

TOTAL 410 Hours for translator stress testing

G-9

Table G-4. Hours Performing Reengineering Tasks -1

TASK

1. Compile, link, and execute
CMS-2 sample (QA9).

2. CMS-2 reengineering to get
valid execution.

3. Translate CMS-2 sample.

a.APL

b. CCCC

c. TRADA

HOURS COMMENTS

0

4

2

1 Mostly done during Quick Look phase with
QA9 arithmetic self-checking tests for
AN/UYK-43.

See Quick Look task 1

Consolidate all single package files into 1
big file for easy compiling and transfers
among host computers.

4. Reengineer Ada to get clean
compile.

a. APLbySunAda 0

b. APLbyGNAT 9

c. CCCC by GNAT 1

d. CCCC by Sun Ada 1

e. TRADA by GNAT 0

f. TRADA by Sun Ada 1

g. TRADA by VAX Ada 2

G-10

Table G-4. Hours Performing Reengineering Tasks - 2

TASK HOURS COMMENTS

5. Redesign/rewrite QA9 in
Ada 95

30

6. Provide compileable Ada
harness.

a. forAPL 2

b. forCCCC 0

c. forTRADA 4 Ada TextJO, IntegerJO, etc used in
harness.

6. Reengineer Ada to get valid
execution.

a. APLbySunAda

b. APLbyGNAT

1

18

Number in parenthesis is the time required
to fully implement exponentiation with a
floating point exponent

c. CCCCbyGNAT 2

d. CCCCbySunAda 8

e. TRADAbyGNAT 0

f. TRADA by Sun Ada 0(6)

g. TRADA by VAX Ada 1

7. Run Ada-ASSURED,
Logiscope and SLOC counter

40

TOTAL 84 Hours performing Reengineering tasks

G-ll

Tab'e G-5. Hours Performing General Tasks and Final Report

TASK

1. Consolidate metrics into
graphs and tables.

a. for Quick Look

b. for Stress Test

c. for Reengineering

2. Write final report narrative.

a. for Quick Look

b. for Stress Test

c. for Reengineering

d. for all other

3. Prepare and give status
reports and presentations.

TOTAL

HOURS COMMENTS

40

140

0

47

117

51

284

92 (status meeting w/ Colket and Chiara,
Riegle and Mumm and FY 96 project review)

450 Hours for General Tasks and Final Report

G-12

PERSON-HOURS TO TRANSLATE QA9 SAMPLE

Tables G-6 and G-7 were used to calculate the total person-hours required to translate the CMS-2
QA9 sample to Ada. Table G-6 shows the person-hours spent in different phases of the translation
process and includes total hours by translator. The hours are given when we used the Sun compiler.
Less time was required with the GNAT compiler.

Table G-7 shows the person-hours required to translate 100 source lines of CMS-2 code for the
QA9 sample. Person-hours per 100 SLOC are reported when counting SLOC as delimiting "$" and
as lines counted by a text editor.

The reader should note the following:

1. The columns "Hours to achieve successful compilation" and "Hours to achieve
successful execution" were obtained from Table C-3. For these columns, the Table C-3
Sun and GNAT hours were added together because the APL translated code was run
through the GNAT compiler first and taken as the starting point when we used the Sun
compiler. The same was done for the CCCC translated code.

2. Less learning and training time was required for the TRADA translator than the others.
An NRaD software engineer who participated in the evaluation was already very familiar
with the TRADA translator.

3. Person-hours are biased because of differences in the capabilities and experience of the
people who worked on the evaluation. Different people worked with different
translators and Ada compilers.

4. Less time would be required to translate QA9 today because of bug fixes by the
translator developers.

5. The times shown in Table G-6 are only for transliteration. If plans are for translator
produced Ada to be deployed and maintained then an additional phase is needed for Ada
quality improvement. Examples of needed improvements include removal of GOTOs,
removal of deal code, improved packaging, better information hiding, conformance to
Ada quality and style guidelines, and other enhancements.

6. QA9 did not include 10 to special devices, direct code, or overlays. The translation of
CMS-2 software for actual systems will be considerably more time consuming.

G-13

(0
c
o
TO

c
TO

<

«
(0
TO
Q.

To
ta

l
H

ou
rs

00
CO

CM
CM

H
ou

rs
 t

o
ac

hi
ve

su

cc
es

sf
ul

ex

ec
ut

io
n

05 o CD

H
ou

rs
 t

o
ac

hi
ev

e
su

cc
es

sf
ul

 c
om

pi
la

tio
n

O) CM -

re

<
O <->
D)
C

re
to
c
5
i-

T— - eg

D
ev

el
op

ln
g

ha
rn

es
s

CM o ■*

Le
ar

ni
ng

an

d
tr

ai
ni

ng

•*
CO CM

O
bt

ai
ni

ng
 a

nd

in
st

al
lin

g
tr

an
sl

at
or

a.
TO

"ST
Q.
nj

CO

7
(e

le
ct

ro
ni

c
tr

an
sf

er
)

Q.
<

Ü
Ü
Ü
Ü TR

A
D

A

§

£
3
O c
I
c
o
&
CO

D.

U>

Ö
.Q
TO —

i a

Table G-7. QA9 Person-Hours/100 SLOC Translated

Person-Hours/100 SLOC

Delimiting $ SLOC Text editor lines SLOC

APL 100(49/3568)= 1.37 100(49/4926)= .99

CCCC 100(68/3568)= 1.91 100(68/4926)= 1.38

TRADA 100(22/3568)= .62 100(22/4926)= .45

G-15

APPENDIX H : ADA 95 QA9: REENGINEERING A MIXED MODE MATH
TEST IN ADA 95

The Ada 95 QA9 was developed to provide additional context in which to assess CMS-2 to Ada
translation. The QA9 test suite was chosen for application redevelopment. Application
redevelopment affords many opportunities for improvement due to requirement-level reengineering,
exploiting modern language features, and design for reuse. By requirement-level reengineering we
mean reconsidering functionality offered in a CMS-2 application and generating a design that
provides the same functionality as well as meeting new requirements. In this case the new
requirements were to minimize McCabe cyclomatic complexity and to maximize reuse.

The CMS-2 QA9 program tests accuracy of mathematical operations placing an emphasis on
mixed-mode arithmetic. The QA9 application tests various combinations of integer, real, and fixed
point operands and receptacles. The Ada 95 QA9 was designed to provide the same functionality in a
more extensible way with very little control (McCabe) complexity. The functionality was provided
by designing a class hierarchy of test cases which contains a total of 126 subclasses.

The number of test cases required is the product of

• 3 different kinds of receptacles (integer, real, fixed),
• 9 different operand pairs (integer, real, fixed => 3 left x 3 right for infix operations), and
• 5 different infix operations (+, -, /, *, **).

Since there is no exponentiation (**) operation for fixed point numbers, 9 (1 *3*3) must be
subtracted from 135 (9*3*5) to yield 126 subclasses.

Control complexity was minimized since the selection of which mathematical operation to
execute and which combination of numeric representation and type conversion to use is performed
by the Ada 95 run-time dispatcher for polymorphic operations. That is what allowed the
implementation to achieve a weighted McCabe complexity metric of 1.1.

Figure H-l is a graphical depiction of the Target (receptacle) object information and class
structure. Each Target instance has a test case number (Num.), a result, lower and upper bounds on
the answer, and a target of the operation. The test case number and result are inherited from the
Target superclass. Each subclass has a different type for the bounds and operation target.

Figure H-2 is a graphical depiction of the (infix) Operation object information and class structure.
It shows all 9 combinations of kinds of operand pairs.

Figure H-3 is a graphical depiction of the integer-based part of Test_Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

Figure H-4 is a graphical depiction of the real-based part of Test_Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

H-l

TargetJ

Target: Int
LowB: Int
HighB: Int

Define
Result_DispIay

Target

Num : Int
Result: Results

Update

Target_R

Target: Real
LowB: Real
HighB: Real

Define
Result_Display

Target_X

Target: Fixed
LowB: Fixed
HighB: Fixed

Define
Result_Display

Figure H-1. Class Structure for Target Object

Figure H-5 is a graphical depiction of the fixed-based part of Test_Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

Given any leaf in the class structure tree, the meaning of the test case can be discerned from the
name. For example, test case R_Test_Xi_M is has a real target, its left operand is fixed (X), its right
operand is int (I) and it performs multiplication (M). Since the left operand is fixed, the right operand
will be converted to fixed for the computation, and the result will be converted to the target type,
real.

H-2

Operation

A
R_Öperation

Left: Real

R_Operation_l R_Operation_R R_Operation_X

Right: Int Right: Real Right: Fixed

l_Operation

Left: Int

X_Operation

Left: Fixed

^Operation,.! l_Operation_R l_Operation_X

Right: Int Right Real Right: Fixed

X_Operation_l X_Operation_R X_Operation_X

Right: Int Right: Real Right: Fixed

Figure H-2. Class Structure for the Operation Object

H-3

A
pLTesTTsl CT

UfisTT] K.Tes_!i_Mj K.TesMi_l

/ Tir^j L^p i.Tea.n L»M tx»naioo_RJ

/IT«

pTresTJ! 2
.!"•_* I kl_Tea_ir_M| M Tea_lr_D|

|/T«_«_R U.J/ R.Teaji L»J"'l_Op<!ra1ionj|

kR.Tea.ti.sJ PSjr

}*-Tea.M| kR_T«aji_M kR_T«aji_DJ

KT«i_M_R L^y R.Tea.lf L»J/f_Operalicin_RJ

kR.Teajr.SJ pRjfeajTi

Äj pR_T«a_lr M pR.Teajrd

|/T»r.«_X j^^j/ X.Ttfl.li LJTTÖp^ätoT

kX-Teaji. E
k*T«UC*[k*_Teaji_U L/x_Tea_ii_D|

[^T»rg«_x [^»^ X.Tea.ir L»MOt>er*i<^K

pX.TMtJfJ E
k*.Teg_lr.A| [*_TesJ<_U kX.Tea_lr.DJ

T-H*J |^>K LT«.h, (^.Op^^.XJ k-T«.M.R [^ Rjrea.,» |^.Op«nH^.XJ f7TZ55jT)«»j/' X_T.ajl. ^T5^^

E kR.TestJx_d pX.Tea.lx ä l*_TeajiÖ

/l-TC'-''-A| h-™-^ |4-T'g-b'-Di ^-T«J».*j ^.T«.l,.l| ^.T«a..».[j ^.T«gJ».A| pLT^.b..»j [<TJ.bt.tj

Figure H-3. Information Structure for the Integer-based Test_Case_Subclasses

H-4

TargetJ latV l_Test_Ri Lj-fc_OpenitionJ

H_Tesl_Ri S K.Tea_Ri_Ö

PTTSIRLS K_Tea_Ri_lJ K.TeS_Ri d

' TaigetJ L»K l_Tea_Rr L»^R_Operation_I)t

K_T«LRrä K_Test_Rr Ö

4_lea_Rr_A K.Tea_Rr M pf_Tea_Rrd

|/Target_R iatV R_Tesl_Ri L»J/R_OperationJ

|*_Tea_RiA fij,

|^-Tea.RLJ [^-Tff-R'-j |A-Tff-W.

KTarget_R InV R_.Tea.Rr L»|fl_OperationJjt

f*^

KTarget_X L»J/ X_Test_Ri LJ^ppetäÜöiT

^_Tea_Ri_ä K.Tea_Ri__t

|*_Tea_Ri_/f |A-Tff-'"-| ^.T.a.Rij}

|/Target_X L«J/ X_Tea_Rr U^R_Operalion_l

[<Tea_Rrä pTfi

pJ_Tea.Rr.| |^-™-R'-j I^.TAI.R. I

/Target,!]^Y l_Tea_Rx |^,^R_OperatiDn.^ |/Taiael_R |^»|/ R_Tea_Rx j^^_OperationJ[: |/Target_X L»K x_Tea_Rx l^R.OperatiraiJ

K_Tea_Rx_-[

3 E
KTea_Rx_E|

i._Rx_l* PÖ <Tea_Rx 4 K-TestRxJ» K.Test_Rx

|^jreLl_Rxi

P*?^ F*^ p**^ f*^ f*^ ^

LXjreL.mi LX_TeL_mj

Figure H-4. Information Structure for the Real-based Test_Case Subclasses

H-5

y TKp«J lm*P l_T«_Xi L»H(_Op<;rcton

/< Tea Xi Al

kl_Tea_*_S

KTMJüU K.Te9.».DJ

/ TnjtlJ L»K I.Tea.Xi Lj/X_Oi*™t>onj(

-^T«_X/_AJ K_Tea_Xr_U K_T«!_Xr_Ol

n L

[/T»(T)el_R L^K R_T»a_Xi L^J^TÖperäti

l«.TKl_« d

^-Teg.XJ.^I [^-T^-"-| pUeajO.Ij

[/T«fO«_R L»K R_TMtJ(/ Lj/X_Op«*ion_F|

f^Tea.»^ pl,-T*'-X'-| ^-T*,-*'-|

KTuTjrtJC UJ/ X_Tea_Xi L^Px^ÖperSSöjl

 A
fOealxTä

KTwyrtJC \—Y X_TeS_Xr Lj*Oper*ion_H

l*_Tea_Xrä

f*.Teg_X,_/| p*-Tg'-*'-| ^.Tea.Xr.tj

•^ T*B«J UJ/ l_Tea_Xx L»J*_Ot*rjlion_Xj [/TKV«_R L»K R_TM_Xx L»^X_Operati<»_>| 1/T«TB«_X L»K X_Test_Xx LJSTÖperifiööjJ

 A
K.T«j_Xx_S

3 E .Tea X* M K Tea X«

(«_TeSJ Xi I

r s 1
^Ttlr p^r^

B |AJ*L»U LKJmiJUJ C^TWrXJT] I*Teil XI I IX T»il_X» l l X TtU X» I
_j r * 1 r M 1 r o i r * 1 r » "i r» i

Figure H-5. Information Structure for the Fixed-based Test_Case Subclasses Fixed-based
Test Case Subclasses

H-6

APPENDIX I: ADA QUALITY AND STYLE CRITERIA

This appendix provides some additional information on the Ada quality and style produced by the
translators. The questions were answered by members of the evaluation team who examined the
Ada QA9s produced by the translators. Analysis tools were not used to answer these questions. An
entry of "NC" (meaning not covered) in the table indicates that the criteria could not be measured by
the QA9 sample.

Table 1-1. Ada Quality and Style Criteria -1

General Criteria APL CCCC TRADA

Y/N Y/N Y/N

1. Did the Ada code compile correctly? N Y Y

COMMENTS: Answers to Table 1-1 were given by Ron Iwamiya

2. a. Were portions that are not translatable commented out? Y Y Y

b. Did comments clearly indicate what is not translated? Y Y Y

COMMENTS:

3. a. Did translator determine and produce typing that is more
explicit than the CMS-2 types (e.g., integer, floating, character,
etc.)?

N Y N

COMMENTS:

4.a. Did translator produce records (for heterogeneous but
related data), anays, loops, blocks, constants, etc., when
appropriate?

Y Y Y

b. Did it associate names with loops and blocks? N Y N

c. Were FOR loops rather than plain loops produced? (FOR
loops are considered to be more maintainable.)

Y Y N

COMMENTS:

1-1

Table 1-1. Ada Quality and Style Criteria - 2

General Criteria

5. Did translator produce GENERICS when appropriate?

COMMENTS:

6.a. Did code produced use UNCHECKED CONVERSIONS?

b. Is the use of UNCHECKED CONVERSIONS justified?

COMMENTS:

7. Did all mathematical functions translate?

COMMENTS:

8. Could translator produce operators ABS, MOD, or REM?

COMMENTS:

9. a. Did translator produce exception handlers?

b. Did it produce shells for exception handlers that will handle
predefined exceptions?

COMMENTS: APL Translator provided one
INDEX_OUT_OF_RANGE exception

APL CCCC TRADA

Y/N Y/N Y/N

NC NC NC

Y Y N

Y Y

Y Y Y

NC NC NC

Y N N

N

1-2

Table 1-1. Ada Quality and Style Criteria - 3

Maintainability APL CCCC TRADA

Y/N Y/N Y/N

1. Did translator decide what should go into package
specifications versus bodies (e.g., variable/constant definitions,
type definitions, subprogram definitions)?

Y Y Y

COMMENTS:

2.a. Did translator produce multiple packages in a way that
logically carries forward structure from CMS-2 source code?
(Desirable)

N Y Y

b. If not, did it produce one big package? Y

COMMENTS: CCCC produced one big file containing the
package specification and body

3. Did translator produce Ada GOTO statements? Y Y Y

COMMENTS: Transfered from the CMS-2 code.

4. Are the variable names produced readable (e.g., do
variable names produced resemble names in CMS-2 code? or Are
they randomly produced)?

Y Y Y

COMMENTS:

5. Did translator produce anonymous arrays? NC NC NC

COMMENTS:

6. Was the Ada source code indented? Y Y Y

COMMENTS:

1-3

Table 1-1. Ada Quality and Style Criteria - 4

Maintainability

7.a. Were USE clauses always produced?

b. If not, were fully qualified names produced?

COMMENTS: TRADA is user selectable

8. Did subprograms contain only one return statements?

COMMENTS: Some contained more than one.

9.a. Did translator produce CASE statements?

b. If so, did the CASE statement have an others clause?

COMMENTS:

10. Are EQUALS and MEANS (CMS-2 constructs) translated into
Ada in such a way that the Ada code is equally as easy to maintain
as the CMS-2 code? (Question contributed by Dave Martin, Loral
Federal Systems)

COMMENT

11. Did translator produce code that uses named association
(e.g., in calls to subprograms, in generics, etc.)?

COMMENTS:

12. Were CMS-2 comments preserved next to the appropriate
Ada statements?

COMMENTS:

13. Did the translator produce multiple statements per line?

COMMENTS:

APL

Y/N

N

Y

Y

N

N

CCCC

Y/N

N

Y

Y

N

N

TRADA

Y/N

N

N

Y

Y

N

N

1-4

Table 1-1. Ada Quality and Style Criteria - 5

Maintainability APL CCCC TRADA

Y/N Y/N Y/N

14. Were reserved words and other elements distinct from each
other (i.e., reserved words may be lower case)?

Y Y Y

COMMENTS:

15.a. Did the translator produce one big file? N Y N

b. Multiple files? Y N Y

c. A big file that can easily be broken up into individual files
(such as pager format)?

N Y N

d. Were specifications and bodies in different files? Y N Y

COMMENTS:

16. Was the use of the WITH clause minimized in the package
specification?

Y Y Y

COMMENTS:

17. For arrays, were attributes 'FIRST, 'LAST, 'LENGTH, or
'RANGE used instead of numeric literals?

N N N

COMMENTS:

18. Were parentheses used in Ada to specify order of
expression evaluation?

Y N N

COMMENTS:

19. Were BOOLEAN types produced? Y Y Y

COMMENTS:

1-5

Table 1-1. Ada Quality and Style Criteria - 6

Portability APL CCCC TRADA

Y/N Y/N Y/N

1 .a. Were types with range constraints or subtypes produced? Y Y Y

b. Were types produced that have range constraints that are
appropriate for the target computer?

Y Y Y

COMMENTS:

2. Were MAXJNT, MAX_DIGITS, MINJNT, MAX_MANTISSA
used? (They should be avoided.)

N N N

COMMENTS:

3. Were types INTEGER, LONG INTEGER, SHORT INTEGER,
FLOAT, LONG_FLOAT, SHORT_FLOAT used?

N N Y

COMMENTS:

1-6

Table 1-1. Ada Quality and Style Criteria - 7

Reliability APL CCCC TRADA

Y/N Y/N Y/N

1. Were variables initialized when declared? N N Y

COMMENTS:

2. Were invariant objects declared as constants rather than
variables?

COMMENTS:

3.a. Did translator figure out mode for subprogram parameters
(e.g., in, out, in/out)

Y Y Y

b. Did it make everything in/out? N N N

COMMENTS;

1-7

APPENDIX J : ADA LINE COUNTER

ADA SOURCE FOR SLOC COUNTER (ASLOC)

The program below was written for this project to count delimiting semicolons, straight lines of
text, and comments for Ada source code.

— Ada SLOC Counter
with Ada.Text_IO;
use Ada.Text_Io;
with Ada.Command_Line ;
procedure Asloc is

package Acl renames Ada.Command_Line;

Unterminated_String : exception;
Invalid Argument : exception;

Lines : Natural
Loc : Natural
Cmt : Natural

= 0
= 0
= 0

Echo
Help
Row
Parms

:
Boolean :=
Boolean :=
Boolean :=
Boolean :=

False;
False;
True;
True;

File
F

: Natural :=
File_Type;

0;

subtype Length is Natural range 0
subtype Index is Length range 1 .
subtype Buffers is string(Index) ;

. 512;
Length'last;

Len
Idx

Length;
Index;

J-l

Buffer : Buffers;
procedure Print is
begin

"set_Col(l);
if Echo then

if File > 0 then
Put(Acl.Argument(File));

else
Put("<standard_input>");

end if;
end if;
if Row then

Put_Line(Natural'image(Loc) & Natural'image(Cmt)
& Natural'image(Lines));

else
Set_Col(l);
Put ("Ada LOCC; ')") ;
Set_Col(16);
Put("Ada Comments");
Set_Col(31);
Put("Text Lines");
Set_Col(l);
Put(Natural'image(Loc));
Set_Col(16);
Put(Natural'image(Cmt));
Set_Col(31);
Put_Line(Natural'image(Lines));

end if;
end Print;

procedure Get_Buff is
begin

Lines := Lines + 1;
Get_Line(Buffer, Len);
Idx := 1;

end Get_Buff;

procedure Incr is
begin

Idx := Idx + 1;
end Incr;
pragma Inline(Incr) ;

function In_String
return Boolean is

begin
return Buffer(Idx) = "" ;

end In_String;

procedure Check_Char_Literal is
begin

if Len - Idx >= 2 and then Buffer(Idx+2) = ••• then
Idx := Idx + 2;

end if;
end Check_Char_Literal;

function Apostrophe
return Boolean is

begin
return Buffer(Idx) = ••';

end Apostrophe;

J-2

procedure Find_End_String is
begin

while Idx < Len loop
Incr;
if Buffer(Idx) = "" then

return;
end if;

end loop;
raise Unterminated_String;

end Find_End_String;

function Eol
return Boolean is

begin
return Idx > Len;

end Eol;

function Comment
return Boolean is

begin
if Buffer(Idx) = '-' then

if (Idx < Len) and then Buffer(Idx+1) = '-' then
Cmt := Cmt + 1;
return True;

else
return False;

end if;
else

return False;
end if;

end Comment;

function Left_Paren
return Boolean is

begin
return Buffer(Idx) = '(';

end Left_Paren;

procedure Skip_Right_Paren is
begin

if not Parms then
Incr;
loop

while not Eol loop
if Buffer(Idx) = ')' then

return;

elsif Left_Paren then
Skip_Right_Paren;

end if;
Incr;

end loop;
Get_Buff;

end loop;
end if;

end Skip_Right_Paren;

J-3

procedure Check_Semicolon is
begin

if Buffer(Idx) = •;• then
Loc := Loc + 1;

end if;
end Check_Semicolon;

procedure Print_Help is
begin

Set_Col(l);
Put_Line(Acl.Command_Name & " input: [-h] [-r] [-e] [file name]");
Put_Line(" -v (off): verbose output format setting switch"");
Put_Line(" -e (off): echo filename switch");
Put_Line(" -p (on) : count •;' in parameter lists switch");
Put_Line(" -h : print help switch");
Put_Line(

" filename is the input file, default is <standard input>");
end Print_Help;

procedure Process_Arg
(N : in Positive) is

begin
if Acl.Argument(N)(1) = ■-• then

if Acl.Argument(N)(2) = 'e' then
Echo := not Echo;

elsif Acl.Argument(N)(2) = 'p' then
Parms := not Parms;

elsif Acl.Argument(N)(2) = 'v' then
Row := Not Row;

elsif (Acl.Argument(N)(2) = ?h*) then
Help := not Help;

else
raise Invalid_Argument;

end if;
else

File := N;
end if;

end Process_Arg;

procedure Set_Mode is
begin

for This in 1 .. Acl.Argument_Count loop
Process_Arg(This);

end loop;
if Help then

File := 0;
Echo := False;

end if;
if File > 0 then

Open(File => F,
Name => Acl.Argument(File),
Mode ■=> In_File) ;

Set_Input(F);
end if;

end Set Mode;

J-4

begin
Set_Mode;
if Help then

Print_Help;
else

while not End_Of_File loop
Get_Buff;
Check_Line:
while not Eol loop

if Comment then
exit Check_Line;

elsif In_String then
Find_End_String;

elsif Left_Paren then
S kip_Ri ght_Paren;

elsif Apostrophe then
Check_Char_Literal;

else
Check_Semicolon;

end if;
Incr;

end loop Check_Line;
end loop;
Print;

end if;
exception

when Invalid_Argument =>
Print_Help;

when others =>
Put("Line:");
Put_Line(Natural'image(Lines));
raise;

end Asloc;

J-5

APPENDIX K : SAMPLE SOURCE CODE: QA9 PROCEDURE
QTSYNOPS CMS-2 AND TRANSLATOR PRODUCED ADA

This appendix contains source code for QTSYNOPS, one of the QA9 procedures translated
during Quick Look. The source code included is for CMS-2 QTSYNOPS and the Ada QTSYNOPS
produced by the three translators. The source code is included so that the reader can see how the
CMS-2 code translate. All of QA9 at various stages of the translation process is being made
available on the Web.

CMS-2 QTSYNOPS

CQT 054 6
CQT 0547
CQT 0548
CQT 054 9
CQT 0550
CQT 0551
CQT 0552
CQT 0553
CQT 0554
CQT 0555
CQT 0556
CQT 0557
CQT 0558
CQT 0559
INDEX''$
CQT 0560
CQT 0561
CQT 0562
CQT 0563
CQT 0564
CQT 0565
CQT 0566
CQT 0567
CQT 0568
CQT 0569
CQT 0570
CQT 0571
CQT 0572
CQT 0573
CQT 0574
CQT 0575
CQT 057 6
CQT 0577
CQT 0578
CQT 057 9
CQT 0580
CQT 0581
CQT 0582

(EXTDEF) PROCEDURE QTSYNOPS $
COMMENT PUT QA NUMBER IN HEADER $

SET CHAR(28,4)(VHSYNHED) TO VMTESTNO $
QTHEAD INPUT VHSYNHED $

IF VINOTSTS LT 1 THEN RETURN$
SET VHTEMP TO H() " TOP OF FORM CONTROL VRBL'' $

LOOP. VARY VSX2 THRU 4 $
QTSYV1. VARY VX1 THRU (VINOTSTS-1) $
QTSYW4. SET VX2 TO TAQR(VXl,ERRORNO) $
QTSYN1. IF VX2 EQ 0 THEN RESUME QTSYV1 $
COMMENT IF THE CODE IS 0 THEN NO TST IS EXPECTED.BYPASS MESSAGE $

SET VIH1L TO VX1 $
COMMENT SAVE LOOP INDEX$

SET VX1 TO VSX1*5+VX1 ''COMPUTE TEST NO. FROM LOOP

COMMENT

comment

PASS.

comment
COMMENT

FAIL.

EXECHED

comment
comment

IF VSX2 NOT 0 THEN GOTO FAIL $
IF VITESTYP EQ 0 THEN GOTO FAIL $
''MUST BE QA SO NO LIST OF TESTS PASSED NEEDED'' $
IF VPASS THEN GOTO PASS$

OUTPUT PRINT (VHASTER ,VHFOLLOW,VHPASS,VHASTER) FHEDSYN $
SET VPASS TO 1 $
IF VX2 NOT 6 THEN GOTO FAIL $
SET VIX3 TO (VX1+1) + 1000*(VITESTNO-10) $

OUTPUT PRINT VIX3 FPASS $
PRINTS A LIST OF TESTS THAT PASSED $
GOTO LOOPRESl$
IF VSX2 NOT 1 THEN GOTO NOTEXEC $
IF VX2 EQ 7 THEN GOTO EXECHED "PRINT OUT HEADER IF FIRST

FAILURE IS A GENERATION ERROR '' $
IF VX2 GT 5 AND VX2 LT 9D THEN QTCONSW USING VX2 THEN
''RECORDS TESTS EXECUTED''
GOTO LOOPRES1 $
IF VX2 GT 5D THEN GOTO NOTEXEC $

. IF VEXEC THEN GOTO EXEC1 ''SKIP HEADER'' $
IF VITESTYP EQ 1 ''QR TEST'' THEN SET VHTEMP TO H(l) $

OUTPUT PRINT VHTEMP ''TOP OF FORM IF THIS IS A QR TEST'' $
OUTPUT PRINT (VHASTER ,VHFOLLOW,VHFAIL,VHASTER)

FHEDSYN $

K-l

CQT 0583 comment OUTPUT PRINT H(0) $
CQT 0584 SET VEXEC TO 1 $
CQT 0585 EXEC1. QTCONSW USING VX2 ''PRINT OUT
CQT 0586 EXECUTION ERROR" $
CQT 0587 GOTO LOOPRES1 $
CQT 0588 NOTEXEC. IF VSX2 NOT 2 THEN GOTO NOTSKIP $
CQT 0589 IF VITESTYP EQ 0 THEN GOTO QTSYN2
CQT 05S0 "MUST BE QA TEST SO NO LIST OF SKIPPED TESTS NEEDED"
CQT 0591 IF VX2 NOT 30D THEN GOTO NOTSKIP $
CQT 0592 IF VSKIP THEN GOTO SKIP $
CQT 0593 comment OUTPUT PRINT (VHASTER1, VHFOLLOW, VHSKIP,VHASTER) FHEDSYN$
CQT 0594 comment OUTPUT PRINT H(0) $
CQT 0595 SET VSKIP TO 1 $
CQT 0596 SKIP. SET VAX1 TO VITESTNO-10 $
CQT 0597 SET VIX3 TO (VX1+1)+1000D*VAX1 $
CQT 0598 comment OUTPUT PRINT VIX3 FPASS $
CQT 0599 COMMENT PRINTS A LIST OF TESTS THAT WERE SKIPPED (CODE 30) $
CQT 0600 GOTO LOOPRESl$
CQT 0601 NOTSKIP. IF VSX2 NOT 3 THEN GOTO NOTVIS $
CQT 0602 IF VX2 GT 13D THEN GOTO NOTVIS $
CQT 0603 IF VX2 LT 9D THEN GOTO LOOPRES $
CQT 0604 IF VITESTYP EQ 0 THEN GOTO QTSYN2
CQT 0605 "THIS MUST BE A QA TEST SO NO VISUALS" $
CQT 0606 IF WIS THEN GOTO VISUAL $
CQT 0607 comment OUTPUT PRINT (VHASTER1,VHFOLLOW,VHVISUAL,VHASTER)
CQT 0608 FHEDSYN $
CQT 0609 comment OUTPUT PRINT H(0) $
CQT 0610 SET WIS TO 1 $
CQT 0611 VISUAL. QTERRD *'VISUAL TESTS PRINT OUT '' $
CQT 0612 GOTO LOOPRES1 $
CQT 0613 NOTVIS. IF VSX2 NOT 4 OR VX2 LT 6 OR(VX2
CQT 0614 GT 8D AND VX2 LT 14D) OR VX2 EQ 30D THEN GOTO LOOPRES $
CQT 0615 IF VITESTYP EQ 0 THEN GOTO QTSYN2
CQT 0616 "THIS MUST BE A QA TEST SO NO SPECIALS" $
CQT 0617 IF VSPEC THEN GOTO SPEC1 $
CQT 0618 comment OUTPUT PRINT (VHASTER1,VHFOLLOW,VHSPEC,VHASTER)
CQT 0619 FHEDSYN $
CQT 0620 comment OUTPUT PRINT H(0) $
CQT 0621 SET VSPEC TO 1 $
CQT 0622 SPEC1. QTERRE "ERROR CODES 14-29" $
CQT 0623 COMMENT ((LINE* $

CQT 0624 LOOPRES1. SET TAQRTYP(VX2,TERRORCT) TO TAQRTYP(VX2,TERRORCT) +1$
CQT 0625 LOOPRES. SET VX1 TO VIH1L $
CQT 0626 END QTSYV1 $
CQT 0627 END LOOP $
CQT 0628 COMMENT PRINT OUT HEADER AND ALL TOTALS $
CQT 0629 QTSYN2. QTMESSW USING 4$
CQT 0630 COMMENT PRINT OUT NUMBER OF STUBBED TESTS $
CQT 0631 IF STUBCNT NOT 0 THEN BEGIN $
CQT 0632 comment OUTPUT PRINT STUBCNT FORMSTUB $
CQT 0633 END $

CQT 0634 SET VEXEC, WIS, VSPEC, VPASS, VSKIP TO 0 "RESET FLAGS" $
CQT 0635 comment OUTPUT PRINT H (A) "CLEAR MAJOR HEADER AND TOP OF FORM"$
CQT 0636 RETURN $

K-2

COT 0637 END-PROC QTSYNOPS $

APL GENERATED ADA QTSYOPS

procedure QTSYNOPS is — 1366
begin

vhsynhed(29..32) := vmtestno ; — 1368
QTHEAD (vhsynhed & c2a_blanks(1..28)) ; — 1369
if vinotsts < 1 then — 1370

return ; —
end if ;
vhtemp := " " & c2a_blanks(1..19) ; — 1371 TOP OF

FORM CONTROL VRBL
«LOOP_D» — 1372
for vsx2_x in 0 .. 4 loop
«QTSYV1» — 1373
vxl := 0 ;
while vxl <= (vinotsts-1) loop
«QTSYW4» — 1374
vx2 := taqr(vxl).errorno ;
«QTSYN1» — 1375
if vx2 = 0 then

goto QTSYV1_E ;
end if ;

— 1376 IF THE CODE IS 0 THEN NO TST IS EXPECTED.BYPASS MESSAGE
vihll := vxl ; — 1377

— 1378 SAVE LOOP INDEX
vxl := vsxl * 5 + vxl ; — 137 9 COMPUTE TEST NO. FROM LOOP INDEX
if vsx2_x /= 0 then — 1380

goto FAIL ;
end if ;
if vitestyp = 0 then — 1381
goto FAIL ;

end if ;
— 1382 MUST BE QA SO NO LIST OF TESTS PASSED NEEDED

if vpass then — 1383
goto PASS ;

end if ;
— 1384 OUTPUT PRINT (VHASTER ,VHFOLLOW,VHPASS,VHASTER) FHEDSYN

vpass := TRUE ; — 1385
«PASS» — 1386
if vx2 /= 6 then

goto FAIL ;
end if ;
vix3 := (vxl + 1) + 1000 * (vitestno - 10) ; — 1387

— 1388 OUTPUT PRINT VIX3 FPASS
— 1389 PRINTS A LIST OF TESTS THAT PASSED

goto LOOPRES1 ; — 1390
«FAIL» — 1391
if vsx2 x /= 1 then

K-3

goto NOTEXEC ;
end if ;
if vx2 = 7 then
goto EXECHED ;

end if ;
if vx2 > 5 and then vx2 < 9 then
QTCONSW (vx2) ;

1395 RECORDS TESTS EXECUTED
goto LOOPRES1 ;

— 1392

1394

PRINT OUT HEADER IF FIRST
FAILURE IS A GENERATION ERROR

1396
end if
if vx2 > 5 then — 1397

1398 SKIP HEADER

— 1399 QR TEST

-- 1404
1405 PRINT OUT

EXECUTION ERROR
1407
1408

goto NOTEXEC ;
end if ;
«EXECHED»
if vexec then
goto EXEC1 ;

end if ;
if vitestyp = 1 then
vhtemp := "1" & c2a_blanks(1..19) ;

end if ;
1400 OUTPUT PRINT VHTEMP TOP OF FORM IF THIS IS A QR TEST
14 01 OUTPUT PRINT (VHASTER ,VHFOLLOW,VHFAIL,VHASTER)
1402 FHEDSYN
1403 OUTPUT PRINT H(0)

vexec := TRUE ;
«EXEC1»
QTCONSW (vx2)
goto LOOPRES1 ;
«NOTEXEC»
if vsx2_x /= 2 then
goto NOTSKIP ;

end if ;
if vitestyp = 0 then — 1409
goto QTSYN2 ;

end if ;
1410 MUST BE QA TEST SO NO LIST OF SKIPPED TESTS NEEDED

if vx2 /= 30 then — 1411
goto NOTSKIP ;

end if ;
if vskip then — 1412
goto SKIP ;

end if ;
1413 OUTPUT PRINT
1414 OUTPUT PRINT H(0,

vskip := TRUE ; — 1415
«SKIP» — 1416
vaxl := vitestno - 10 ;
vix3 := (vxl + 1) + 1000 * vaxl ; — 1417

1418 OUTPUT PRINT VIX3 FPASS
1419 PRINTS A LIST OF TESTS THAT WERE SKIPPED

goto LOOPRES1 ; — 1420
«NOTSKIP» — 1421
if vsx2_x /= 3 then
goto NOTVIS ;

(VHASTER1,VHFOLLOW,VHSKIP,VHASTER) FHEDSYN

(CODE 30)

K-4

end if ;
if vx2 > 13 then — 1422

goto NOTVIS ;
end if ;
if vx2 < 9 then — 1423

goto LOOPRES ;
end if ;
if vitestyp = 0 then — 1424
goto QTSYN2 ;

end if ;
— 1425 THIS MUST BE A QA TEST SO NO VISUALS

if vvis then — 1426
goto VISUAL ;

end if ;
— 1427 OUTPUT PRINT (VHASTER1,VHFOLLOW,VHVISUAL,VHASTER)
— 1428 FHEDSYN
— 1429 OUTPUT PRINT H(0)

vvis := TRUE ; — 1430
«VISUAL» — 1431 VISUAL TESTS PRINT OUT
QTERRD ;
goto LOOPRES1 ; — 1432
«NOTVIS» — 1433
if vsx2_x /= 4 or else vx2 < 6 or else (vx2 —

> 8 and then vx2 < 14) or else vx2 = 30 then — 1434
goto LOOPRES ;

end if ;
if vitestyp = 0 then — 1435

goto QTSYN2 ;
end if ;

— 1436 THIS MUST BE A QA TEST SO NO SPECIALS
if vspec then — 1437
goto SPEC1 ;

end if ;
— 1438 OUTPUT PRINT (VHASTER1,VHFOLLOW,VHSPEC,VHASTER)
— 1439 FHEDSYN
— 1440 OUTPUT PRINT H(0)

vspec := TRUE ; — 1441
«SPEC1» — 1442 ERROR CODES 14-29
QTERRE ;
«LOOPRES1» — 1444
taqrtyp (vx2) .terrorct := taqrtyp (vx2) .terrorct + 1 ; —
«LOOPRES» — 1445
vxl := vihll ;

«QTSYV1_E» — 1446
vxl := vxl + 1 ;

end loop ;
vsx2 := vsx2_x + 1 ; — 1447

end loop ;
— 14 48 PRINT OUT HEADER AND ALL TOTALS
«QTSYN2» — 1449
QTMESSW (4) ;

— 1450 PRINT OUT NUMBER OF STUBBED TESTS
if stubcnt /= 0 then — 1451

— 1452 OUTPUT PRINT STUBCNT FORMSTUB

K-5

null ; — 1453
end if ;
vexec := FALSE ; — 1454 RESET FLAGS
vvis := FALSE ;
vspec := FALSE
vpass := FALSE
vskip := FALSE

— 1455 OUTPUT PRINT H(A) CLEAR MAJOR HEADER AND TOP OF FORM
return ; — 1456

end QTSYNOPS ; — 1457

CCCC GENERATED ADA QTSYOPS

PROCEDURE QTSYNOPS IS
PUT QA NUMBER IN HEADER

BEGIN
ASSIGN_CHAR_SUBSTRING (VHSYNHED.ALL.OVER, 28, 4 , VMTESTNO.ALL.OVER) ;
QTHEAD (VHSYNHED.ALL.OVER) ;
IF VINOTSTS.ALL.OVER<l THEN

RETURN;
END IF;
VHTEMP.ALL.OVER := PAD(" ",20) ;
« LOOP_0 »
VSX2.ALL.OVER := 1 ;
WHILE (VSX2.ALL.OVER<=4) LOOP
« QTSYV1 »
VX1.ALL.OVER := 1 ;
WHILE (VXl.ALL.OVER<=(VINOTSTS.ALL.OVER-l)) LOOP
« QTSYW4 »
VX2.ALL.OVER :=

FIELD_H_FCN_INTEGER(TAQR_words.ALL(0,VX1.ALL.OVER
),0,8) ;

« QTSYN1 »
IF VX2.ALL.OVER=0 THEN

GOTO next_stmt_QTSYVl ;
IF THE CODE IS 0 THEN NO TST IS EXPECTED.BYPASS

MESSAGE
END IF;
VIH1L.ALL.OVER := VX1.ALL.OVER ;

SAVE LOOP INDEX
VX1.ALL.OVER := INTEGER(VSX1.ALL.OVER)*5+VXl.ALL.OVER ;
IF VSX2.ALL.OVER/=0 THEN
GOTO FAIL ;

END IF;
IF VITESTYP.ALL.OVER=0 THEN
GOTO FAIL ;

''MUST BE QA SO NO LIST OF TESTS PASSED NEEDED''

K-6

FHEDSYN

TEST'

END IF;
IF int_to_bool(VPASS.ALL.OVER) THEN
GOTO PASS ;

OUTPUT PRINT (VHASTER ,VHFOLLOW,VHPASS,VHASTER)

END IF;
VPASS.ALL.OVER := 1 ;
« PASS »
IF VX2.ALL.OVER/=6 THEN
GOTO FAIL ;

END IF;
VIX3.ALL.OVER := (VX1.ALL.OVER+1)+1000*(VITESTNO.ALL.OVER-10) ;

OUTPUT PRINT VIX3 FPASS
PRINTS A LIST OF TESTS THAT PASSED

GOTO LOOPRES1 ;
« FAIL »
IF VSX2.ALL.OVER/=l THEN
GOTO NOTEXEC ;

END IF;
IF VX2.ALL.OVER=7 THEN
GOTO EXECHED ;

END IF;
IF VX2.ALL.OVER> 5 AND VX2.ALL.OVER<9 THEN

DECLARE
QTCONSW_invalid : BOOLEAN ;

BEGIN
QTCONSW (VX2.ALL.OVER , QTCONSW_invalid) ;

END;
GOTO LOOPRES1 ;

END IF;
IF VX2.ALL.OVER> 5 THEN
GOTO NOTEXEC ;

END IF;
« EXECHED »
IF int_to_bool{VEXEC.ALL.OVER) THEN
GOTO EXEC1 ;

END IF;
IF VITESTYP.ALL.OVER=l THEN
—QR TEST
VHTEMP.ALL.OVER := PAD("1",20) ;

OUTPUT PRINT VHTEMP ''TOP OF FORM IF THIS IS A QR

OUTPUT PRINT (VHASTER ,VHFOLLOW,VHFAIL,VHASTER)
FHEDSYN

OUTPUT PRINT H(0)
END IF;
VEXEC.ALL.OVER := 1 ;

« EXEC1 »
DECLARE
QTCONSW_invalid : BOOLEAN ;

BEGIN
QTCONSW (VX2.ALL.OVER , QTCONSW_invalid) ;

END;
GOTO LOOPRES1 ;

K-7

FKEDSYN

VX2

« NOTEXEC »
IF VSX2.ALL.OVER/=2 THEN
GOTO NOTSKIP ;

END IF;
IF VITESTYP.ALL.OVER=0 THEN
GOTO QTSYN2 ;

END IF;
IF VX2.ALL.OVER/=30 THEN
GOTO NOTSKIP ;

END IF;
IF int_to_bool(VSKIP.ALL.OVER) THEN
GOTO SKIP ;

OUTPUT PRINT (VHASTERl,VHFOLLOW,VHSKIP,VHASTER)

OUTPUT PRINT H(0)
END IF;
VSKIP.ALL.OVER := 1 ;
« SKIP »
VAX1.ALL.OVER := fixed32s0(VITESTNO.ALL.OVER-10) ;
VIX3.ALL.OVER := INTEGER((VX1.ALL.OVER+1)+FLOAT(1000*VAX1.ALL.

OVER)) ;
OUTPUT PRINT VIX3 FPASS

PRINTS A LIST OF TESTS THAT WERE SKIPPED (CODE 30)
GOTO LOOPRES1 ;
« NOTSKIP »
IF VSX2.ALL.OVER/=3 THEN

GOTO NOTVIS ;
END IF;
IF VX2.ALL.OVER> 13 THEN
GOTO NOTVIS ;

END IF;
IF VX2.ALL.OVERO THEN
GOTO LOOPRES ;

END IF;
IF VITESTYP.ALL.OVER=0 THEN
GOTO QTSYN2 ;

END IF;
IF int_to_bool(WIS.ALL.OVER) THEN
GOTO VISUAL ;

OUTPUT PRINT (VHASTERl,VHFOLLOW,VHVISUAL,VHASTER)
FHEDSYN

OUTPUT PRINT H(0)
END IF;
WIS.ALL.OVER := 1 ;
« VISUAL »
QTERRD ;
GOTO LOOPRES1 ;
« NOTVIS »
IF VSX2.ALL.OVER/=4 OR VX2.ALL.OVER<6 OR (VX2.ALL.OVER> 8 AND

.ALL.OVER<14) OR VX2.ALL.OVER=30 THEN
GOTO LOOPRES ;

END IF;
IF VITESTYP.ALL.OVER=0 THEN

K-8

GOTO QTSYN2 ;
END IF;
IF int_to_bool(VSPEC.ALL.OVER) THEN
GOTO SPEC1 ;

OUTPUT PRINT (VHASTERl,VHFOLLOW,VHSPEC,VHASTER)
FHEDSYN

OUTPUT PRINT H(0)
END IF;
VSPEC.ALL.OVER := 1 ;
« SPEC1 »
QTERRE ;

((LINE*
« LOOPRES1 »
FIELD_H_PROC_INTEGER (FIELD_H_FCN_INTEGER(TAQRTYP_words.ALL(0,

VX2.ALL.OVER),16,16)+1,16,16,TAQRTYP_words.ALL(0,VX2.ALL.OVER)
) ;

« LOOPRES »
VX1.ALL.OVER := VIH1L.ALL.OVER ;
« next_stmt_QTSYVl »
VX1.ALL.OVER := VX1.ALL.OVER+1 ;

END LOOP;
« next_stmt_LOOP_0 »
VSX2.ALL.OVER := INTEGER(VSX2.ALL.OVER)+1 ;

END LOOP;
PRINT OUT HEADER AND ALL TOTALS

« QTSYN2 »
DECLARE

QTMESSW_invalid : BOOLEAN ;
BEGIN

QTMESSW (4 , QTMESSW_invalid) ;
END;

PRINT OUT NUMBER OF STUBBED TESTS
IF STUBCNT.ALL.OVER/=0 THEN

NULL; —
OUTPUT PRINT STUBCNT FORMSTUB

END IF;
VEXEC.ALL.OVER := 0 ;
—RESET FLAGS
WIS.ALL.OVER := 0 ;
VSPEC.ALL.OVER
VPASS.ALL.OVER
VSKIP.ALL.OVER

= 0
= 0
= 0

OUTPUT PRINT H(A) " CLEAR MAJOR HEADER AND TOP OF FORM''
RETURN;

END QTSYNOPS ;

TRADA GENERATED ADA QTSYNOPS

PROCEDURE Qtsynops IS

K-9

Invalid_parameter : Boolean;

BEGIN — QTSYNOPS

PUT QA NUMBER IN HEADER
Vhsynhed (29 .. 32) := Vmtestno;
Qthead (Vhead_input => Vhsynhed & " »);

IF Vinotsts < 1
THEN

RETURN;
END IF;

Vhteirp := " »; — TOp OF FORM CONTROL VRBL
« Loop_x »
Vsx2 := 0;
LOOP
« Qtsyvl »
Vxl := 0;
LOOP

—+++++++++++
— ERRORNO is overlaid
— CQT 0554 QTSYW4. SET VX2 TO TAQR(VX1,ERRORNO) $
« Qtsyw4 »
Vx2 := Taqr (Vxl).Errorno;
« Qtsynl »
IF Vx2 = 0
THEN

GOTO Qtsyvl_resume;
END IF;

IF THE CODE IS 0 THEN NO TST IS EXPECTED.BYPASS MESSAGE
Vihll := Vxl;
~ SAVE LOOP INDEX
Vxl := Vsxl * 5 + Vxl; — COMPUTE TEST NO. FROM LOOP INDEX
IF Vsx2 /= 0
THEN

GOTO Fail;
END IF;
IF Vitestyp = 0
THEN

GOTO Fail;
END IF;

''MUST BE QA SO NO LIST OF TESTS PASSED NEEDED''
IF Vpass
THEN

GOTO Pass;
END IF;

— OUTPUT PRINT (VHASTER ,VHFOLLOW, VHPASS,VHASTER) FHEDSYN
Vpass := True;
<< Pass >>
IF Vx2 /= 6
THEN

GOTO Fail;
END IF;

K-10

Vix3 := Vxl + 1 + 1000 * (Vitestno - 10);
— OUTPUT PRINT VIX3 FPASS

PRINTS A LIST OF TESTS THAT PASSED
GOTO Loopresl;
« Fail »
IF Vsx2 /= 1
THEN

GOTO Notexec;
END IF;
IF Vx2 = 7
THEN

GOTO Exeched;
— A=== Embedded note(s):
— ''PRINT OUT HEADER IF FIRST

FAILURE IS A GENERATION ERROR ''
END IF;
IF Vx2 > 5 AND THEN Vx2 < 9
THEN

Qtconsw (Vx2, Invalid_parameter);
IF Invalid_parameter
THEN

RAISE Constraint_error;
END IF;
— RECORDS TESTS EXECUTED
GOTO Loopresl;

END IF;
IF Vx2 > 5
THEN

GOTO Notexec;
END IF;
« Exeched »
IF Vexec
THEN

GOTO Execl;
— *=== Embedded note(s): ''SKIP HEADER''

END IF;
IF Vitestyp = 1
THEN

Vhtemp := "1
END IF;
— OUTPUT PRINT VHTEMP ''TOP OF FORM IF THIS IS A QR TEST''

OUTPUT PRINT (VHASTER , VHFOLLOW,VHFAIL,VHASTER)
FHEDSYN

— OUTPUT PRINT H(0)
Vexec := True;
« Execl »
Qtconsw (Vx2, Invalid_parameter);
IF Invalid_parameter
THEN

RAISE Constraint_error;
END IF;
— /v=== Embedded note(s) :
— *'PRINT OUT

EXECUTION ERROR''

K-ll

GOTO Loopresl;
« Notexec >>
IF Vsx2 /= 2
THEN

GOTO Notskip;
END IF;
IF Vitestyp = 0
THEN

GOTO Qtsyn2;
— "=== Embedded note(s): ''MUST BE QA TEST SO NO LIST OF
— SKIPPED TESTS NEEDED''

END IF;
IF Vx2 /= 30
THEN

GOTO Notskip;
END IF;
IF Vskip
THEN

GOTO Skip;
END IF;
-- OUTPUT PRINT (VHASTERl,VHFOLLOW,VHSKIP,VHASTER) FHEDSYN
— OUTPUT PRINT H(0)
Vskip := True;
« Skip >>
Vaxl := A_32_s_0 (Vitestno - 10);
Vix3 := I_32_s (A_32_S_0 (Vxl + 1) + A_32_S_0 (1000 * Vaxl));
-- OUTPUT PRINT VIX3 FPASS

PRINTS A LIST OF TESTS THAT WERE SKIPPED (CODE 30)
GOTO Loopresl;
« Notskip >>
IF Vsx2 /= 3
THEN

GOTO Notvis;
END IF;
IF Vx2 > 13
THEN

GOTO Notvis;
END IF;
IF Vx2 < 9
THEN

GOTO Loopres;
END IF;
IF Vitestyp = 0
THEN

GOTO Qtsyn2;
— A==== Embedded note(s) : ''THIS MUST BE A QA TEST SO NO
— VISUALS"

END IF;
IF Vvis
THEN

GOTO Visual;
END IF;

OUTPUT PRINT (VHASTERl,VHFOLLOW,VHVISUAL,VHASTER)
FHEDSYN

K-12

— OUTPUT PRINT H(0)
Vvis := True;
« Visual »
Qterrd;
— *=== Embedded note(s): ''VISUAL TESTS PRINT OUT ' •
GOTO Loopresl;
« Notvis »
IF Vsx2 /= 4
OR ELSE Vx2 < 6
OR ELSE (Vx2 > 8 AND THEN Vx2 < 14)
OR ELSE Vx2 =30

THEN
GOTO Loopres;

END IF;
IF Vitestyp = 0
THEN

GOTO Qtsyn2;
— A=== Embedded note(s): "THIS MUST BE A QA TEST SO NO
— SPECIALS''

END IF;
IF Vspec
THEN

GOTO Sped;
END IF;

OUTPUT PRINT (VHASTERl,VHFOLLOW,VHSPEC,VHASTER)
FHEDSYN

— OUTPUT PRINT H(0)
Vspec := True;
« Sped »
Qterre;
— A=== Embedded note(s): "ERROR CODES 14-29"

**

« Loopresl »
Taqrtyp (Vx2).Terrorct := Taqrtyp (Vx2).Terrorct + 1;
« Loopres »
Vxl := Vihll;
« Qtsyvl_resume »
Vxl := Vxl + 1;
EXIT WHEN Vxl > Vinotsts - 1;

END LOOP;
— ~=== Embedded note(s): "QR TEST"
Vsx2 := Vsx2 + 1;
EXIT WHEN Vsx2 > 4;

END LOOP;
— PRINT OUT HEADER AND ALL TOTALS
« Qtsyn2 »
Qtmessw (4, Invalid_parameter);
IF Invalid_parameter
THEN

RAISE Constraint_error;
END IF;

PRINT OUT NUMBER OF STUBBED TESTS

K-13

IF Stubcnt /= 0
THEN

NULL;

— *=== Embedded note(s): ''OUTPUT PRINT STUBCNT FORMSTUB
END IF;

Vskip := False; — RESET FLAGS
Vpass := Vskip; -- RESET FLAGS
Vspec := Vpass; -- RESET FLAGS
Vvis := Vspec; — RESET FLAGS
Vexec := Vvis; — RESET FLAGS
— OUTPUT PRINT H(A) "CLEAR MAJOR HEADER AND TOP OF FORM"
RETURN;

END Qtsynops;

K-14

APPENDIX L : TRANSLATION ANALYSIS TOOLS

Table L-l is a table that contains a description and points-of-contact for analysis tools used
during the experiment in addition to the CMS-2 to Ada translators.

Table L-1. Description and POCs for Analysis Tools Applied -1

Tool Description Point-of-Contact

Ada-ASSURED Checks for conformance to guidelines and can
automatically make some changes to the code so
that it conforms.

Jeffrey Bums
GrammaTech
One Hopkins Place
Ithaca, NY 14850
(607) 273-7340

Ada SLOC Counter1 Counts Ada source lines of code (;), Ada
comments, and total lines.

Hans Mumm
NRaD
53140 Systems St.
San Diego, CA 92152
(619)553-4004

Assembler Design
Extractor (ADE)

Converts assembler to CMS-2 Jim O'Sullivan
SYNETICS Corporation
4485 Danube Drive, Suite 24
Bayberry Office Park
King George, VA 22485
(540)663-2137

CMS-2 Source Code
Design Analyzer

(DESAN)

Assists in the reengineering of CMS-2 code
prior to translation to Ada. Identifies overlays,
data units that are defined but not referenced,
and data units that are referenced but not set to a
value.

Hans Mumm
NRaD
53140 Systems St.
San Diego, CA 92152
(619)553-4004

CMS-2 Source Code
Metrics Generator

(METRC)

Produces source code statistics (e.g., SLOC for
CMS-2 and direct code, source statements in
DDs and SYSPROCS), a keyword report, and
Halstead and McCabe complexity metrics.

Hans Mumm
NRaD
53140 Systems St.
San Diego, CA 92152
(619)553-4004

Logiscope Produces many quality metrics from source
code, including Halstead and McCabe measures,
comments per lines of executable statements,
mean SLOC for a subprogram, number of GOTO
statements, number of returns in a subprogram
and others. A CMS-2 Logiscope capability is
available from Verilog.

Dennis Andrews
Verilog
3010 LBJ Freeway
Suite 900
Dallas, TX 75234
(800)424-3095, x24

1 SLOC count is provided in Appendix J.

L-l

Table L-2 is a table that contains a description and points-of-contact for analysis tools that are
potentially useful to a project that translates source code from CMS-2 to Ada.

 Table L-2. Description and POCs for Potentially Useful Analysis Tools -1

Tool

AdaMat

CLUE

HyperBook

Logiscope CMS-2

Description

Provides detailed information on
the maintainability, portability, and
reliability of Ada source.

Prototype CMS-2 reverse
engineering tool that produces data
flow diagrams, control flow diagrams
and reports to assist the programmer
in understanding CMS-2 source
code.

Facilitates the analysis of program
documentation, specifically source
code. The tool facilitates software
understanding and maintenance.
Software is analyzed to produce a
documentation database. The
database is browsed from UNIX or
PC workstations on a network by
using programs written in Java.

Point-of-Contact
Chris McGuire
Dynamics Research Corporation
60 Frontage Road
Andover, MA 01810
(508)475-9090, x1730

Suzy Roberts
Mitre Corporation
Clue@mitre.org
202 Burlington Road
Mail Stop K329
Bedford MA 01730
(617)271-8963

Produces many quality metrics
from CMS-2source code, including
Halstead and McCabe measures,
comments per lines of executable
statements, mean SLOC for a
subprogram, number of GOTO
statements, number of returns in a
subprogram and others. A CMS-2
Logiscope capability is available from
Verilog.

Noah Prywes
Computer Command and
Control Company
2300 Chestnut Street
Suite 230
Philadelphia, PA 199103
(215)854-0555

Dennis Andrews
Verilog
3010 LBJ Freeway
Suite 900
Dallas, TX 75234
(800)424-3095, x24

L-2

Table L-2. Description and POCs for Potentially Useful Analysis Tools - 2

Tool Description Point-of-Contact

Object Abstractor Assists in making translated Ada
higher quality. It includes a
capability to convert non object
oriented Ada to object oriented Ada
in a semi-automated manner.

Romel Rivera
Xinotech Research Incorporated
1313 Fifth Street Southeast
Suite 213
Minneapolis, MN 55414
(612)379-3844

Pretty printers Makes the Ada source code more
readable and maintainable.

For pretty printers in the Public Ada
Library (PAL)

http://wuarchive.wustl/edu/languages/ada/

Reengineering Toolkit Aids software engineers in
restructuring existing Ada source
code. The restructuring facilitates
readability and maintainability. This
toolset is especially useful when
source code is reused or translated
from another language into Ada.

Kevin McQuown
Rational
3963 Via Hoigura
San Diego, CA 92130
(619)794-6801

L-3

APPENDIX M : MK-2 CMS-2L AND ADA SOURCE CODE

This appendix contains CMS-2L and Ada source code for the NAVSEA project, Combat Control
System MK-2 Fire Control System. This software computes target location information. The CMS-
2L code contains no direct code.

The CMS-2L code was translated by the APL, CCCC, and TRADA translators. The APL
translator produced some Ada statements, was incomplete, and did not compile. The CCCC
translator produced code that compiled and executed. The TRADA translator produced no Ada
source code. For purposes of comparison, the CMS-2L code was also translated to Ada by hand.
The hand version included some re-engineering. These artifacts are provided as sections of this
appendix.

• Original CMS-2L MK-2 Fire Control System

• Ada Translation Using APL Translator

• APL Translator Predefined Packages

• Ada Translation Using CCCC Translator

• CCCC Translator Predefined Packages

• Ada Reengineering of MK-2 Code by Hand

The Ada Code Reengineering of MK-2 code produced by hand represents the final desired
product from the reengineering of CMS-2 Code. In this regard, it is useful as a benchmark for
comparison.

Of the two successful translations both were problematic.

• The CCCC translation was successful in that it compiled correctly. Unfortunately, the
code produced did not use the features of Ada that facilitate code maintenance or
reengineering, but rather used features undesirable in a mission-critical, safety-critical
application. If any reengineering or code evolution is required, it would be far better to
perform a manual translation from the CMS-2 than to use any of the CCCC generated
translated output. On the other hand, the CCCC translator could be extremely useful in
translating code where that code would be integrated into a modern Ada environment,
unchanged. This could be a legitimate requirement for many applications. However, this
approach is not recommended should there ever be a desire to evolve or reengineer the
code.

• The APL translation did not generate compilable code. In fact the 100+ additional
comments represent areas the APL translator could not translate. However, most of these
comments represented code where manual intervention is really desirable in order to
produce higher quality translated code. In a sense, the APL translator could be used as an
effective tool in supporting an engineer in the reengineering of the CMS-2 code into Ada.

Basically, the output of the CCCC translation could be used as is with minimal modifications but
could not be easily reengineered; the output of the APL translator would require significant work
resulting in a reasonably engineered translation. Any translated product would require additional
reengineering in order to evolve the code with new requirements. Comparisons between the hand
generated code and the translated code are made in the following areas:

M-l

• Source Code Lines of Code (SLOC)

• Naming Conventions

• Elimination of Intermediate Variables

• Use of Standard Packages

• Memory Management

• Performance

• Position to Reengineer

SOURCE CODE LINES OF CODE (SLOC)

Table M-l provides the SLOC counts for the MK-2 source code.

Table IWI-1. MK-2 Source Lines of Code Counts

Lines of text (Delimiting $ or;) Comments

CMS-2L MK-2 Code 298 205 178/2041

APL Ada 374 97 274

APL Basic_Defns 642 317 165

APL Total 1016 414 439

CCCC Ada 936 454 175

CCCC pre_defined 1305 1305 0

CCCC Total 2241 1759 175

TRADA Ada - - -

TRADA - - -

TRADA Total - - -

Hand translation 288 99 132

It should be noted that the hand translation contains about 50% SLOC compared to the original
CMS-2L code.

1 The first number represents the number of informational comments while the second is the number of lines of text

M-2

NAMING CONVENTIONS

The original CMS-2L MK-2 code used cryptic 8 letter naming conventions. Ada translations
require meaningful names to facilitate understanding of the code. Automatic name conversion is not
possible. The last page page M-54 of the Hand reengineered Ada code contains mappings from
CMS-2 identifiers to Ada 95 identifiers. Tools to support automatic name conversion throughout all
system packages are highly desirable.

ELIMINATION OF INTERMEDIATE VARIABLES

Intermediate variables are used extensively in CMS-2. In Ada, their use is avoided. For example,
to compute latitude, Ada might use the statement:

Latitude := Arcsin (Sin(Lat)*Cos(Theta) + Cos(Lat)*Sin(Theta)*Cos (Brg)) ;

In CMS-2, one would typically break the statement into a number of intermediate statements with
locally declared variables. The data definitions would appear as:

LOCRBLL sub-dd $
vrbl TEMPARG f $ 'interim value for arcsin
vrbl COSTHET f $ •Cosine R/Re'*
vrbl SINTHET f $ 'Sin R/Re"
vrbl C0SLAT1 f $ 'Cosine LAT1''
vrbl SINLAT1 f $ 'Sin LAT1"
vrbl COSBRG f $ 'Cosine BRG ' '
vrbl SINBRG f $ ' Sin BRG ' '
end-sub-dd LOCRBLL $

And the intermediate statements might appear as:
set SINLAT1 to SIN(LAT)$
set COSTHET to COS(THETA)$
set COSLAT1 to COS(LAT)$
set SINTHET to SIN(THETA)$
set COSBRG to COS(BRG)$
set TEMPARG to SINLATl*COSTHET+COSLATl*SINTHET*COSBRG$
set LATITUD to ASIN(TEMPARG)$

Such intermediate statements are used extensively in CMS-2 as a means to provide code
optimization to improve performance. In the MK-2 example, SINLAT1, COSTHET, COSLAT1,
SINTHET, and COSBRG are also used for the computation of longitude. Hence the intermediate
variable would eliminate the additional costly computation. In Ada, such a breakdown is
counterproductive as a good optimizing compiler would recognize the opportunity to optimize the
code and perform the optimization automatically.

The elimination of intermediate variables is one of the reasons why the code translated by hand is
approximately 50% of the original CMS-2L. These extra intermediate forms contributed to

M-3

complicating the translated CCCC. Unfortunately, a translator is not capable of eliminating the
intermediate variables. Translators simply converts existing CMS-2 code to Ada. A manual
conversion is desirable after the code translation. Normal text editing tools are quite satisfactory for
this transformation. The last page page M-54 of the Hand reengineered Ada code identifies the
intermediate variables that were not required.

The APL translator handled intermediate variables in an iteresting way. In CMS-2, intermediate
variables are typically coded as SUB-DDs or LOCRBLLs instead of SYS-DDs. Instead of making
the translation, the APL translator generated an error message, thus pointing out a situation where
the intermediate variable should be eliminated. For example, the "vrbl COSLAT1 f$" statement
above was flagged as an error in the Ada "- $$ -vrblcoslatl f -- 366" comment. This facilitated
the reengineering of the code, but resulted in an output which would require a manual reengineering.

USE OF STANDARD PACKAGES

One might expect a translator to take advantage of the standard Ada packages such as
Ada.Numerics and Ada.Calendar. This was not done by any of the translators. Yet this is something
desirable for the reengineering of any application. Both of these packages were used in the manual
translation.

Both CCCC and APL used a package to facilitate the mapping of CMS-2 constructs to Ada. The
APL package was called Basic_Defns and the CCCC package was called pre_defined. Each package
provided its own math package. At the time the translators were developed, a standard Ada math
package did not exist. Ada95 now has Ada.Numerics.

CCCC uses a pre_defined specification (536 SLOC) and body (769 SLOC) to facilitate the
mapping of CMS-2 constructs to Ada. Both the pre_defined.ads and pre_defined .adb are required by
the CCCC translated Ada code. Only a small portion of this code was actually needed by the CCCC
Ada MK-2 code. However, the total SLOC required was 1,759, higher by an order of magnitude than
any other alternative.

These translator packages might be useful in facilitating a translation that can compile and
execute, but in the long run should be removed. Any serious code reengineering activity would want
to eliminate dependencies on these translator supplied packages. The packages hinder code
understanding and may not be portable for all environments.

MEMORY MANAGEMENT

Modern memory management is typically performed either using stack or heap mechanisms.
Stack mechanisms are default for objects and their operations. Stacks can grow or shrink as memory
is required. Heap mechanisms are evoked using Ada access types with operations on these types.
Garbage collection is typically required to reclaim unused heap memory.

CMS-2 uses a fixed memory management with overlays. Depending on the overlay, an different
objects can be mapped to the same location. This primitive memory mechanism creates serious
translation problems. For example, the CMS-2L statement for own ship longitude:

VRBL SUDVOSLN F P -120.0*(FKPI2/360.0) $

M-4

Could possibly be translated to:

subtype Sudvosln_type is Float;
Sudvosln : Sudvosln_Type := -120.0*fkpi2/360.0

Which might be reengineered to:

subtype Longitude is Float range -180.0 .. + 180.0;
Own_Ship_Longitude: Longitude := -120.0*2*PI/360.0;

Had good CMS-2 programming practices been used this translation would be effective.

However, memory was a serious constraint on many CMS-2 systems. As a solution, overlays
were used, thus providing a single memory location with multiple declarations. Unfortunately,
CMS-2 programmers also frequently used undesirable side-effects with the overlays. For example,
all assignments to the value of SUDVOSLN should be of the form: "set SUDVOSLN to
something$" - However, if the overlay mapped LONG to the same address, the value of
SUDVOSLN could be easily changed through: "set LONG to somethingelse$." This side-effect
saved the additional instruction of: "set SUDVOSLN to LONG$." Hence, top rated CMS-2
programmers prided themselves in the ability to optimize CMS-2 code through the use of side-
effects. In the mid 1980s, this practice was viewed as extremely dangerous. Hence this problem is
pervasive legacy CMS-2 code. In the MK-2 code used for this comparison which was developed in
the late 1980s-early to 1990s, overlays were not used.

APL and TRADA took the approach that side-effects would not be considered in the translation.
Hence users would have to test the translated code for possible side effects, an additional burden on
the developer as many side-effects are subtle and hard to find.

As the use of "side-effects" was a common practice, CCCC took the approach of using heap
memory with access types. Hence when an overlay was used, the access types could point to the
same memory address and the side-effect would be captured. To the credit of CCCC, their
translation mechanism was the only one to correctly translate and execute the MK-2 example.

Unfortunately the price for this correction is high. The translated code is extremely difficult to
understand and modify, requires many extra statements, and requires heap memory management.
CCCC translated the above CMS-2L statement to:

M-5

TYPE SUDVOSLN_item_type IS
RECORD

OVER : FLOAT := (-120.0)*(FKPI2/360.0);
END RECORD;

TYPE SUDVOSLN_item_pointer IS ACCESS SUDVOSLN_item type;
TYPE SUDVOSLN_one_type IS ARRAY (0..0) OF cms2_word;
TYPE SUDVOSLN_one_pointer IS ACCESS SUDVOSLN_one_type;

FUNCTION SUDVOSLN_item_address_access IS NEW UNCHECKED CONVERSION
(SOURCE=>ADDRESS,TARGET=>SUDVOSLN_item_pointer);

SUDVOSLN : SUDVOSLN_item_pointer := SUDVOSLN_item address access
(SUDVOSLN_memory'ADDRESS) ;

FUNCTION SUDVOSLN_one_address_access IS NEW UNCHECKED_CONVERSION
(SOURCE => ADDRESS, TARGET => SUDVOSLN one pointer);

SUDVOSLN_one : SUDVOSLN_one_pointer :=
SUDVOSLN_one_address_access

(SUDVOSLN^emory'ADDRESS) ;

The use of access types seems to complicate code unnecessarily. Also the use of the generic
Unchecked_Conversion is not desirable and potentially extremely dangerous. It also explains why
the CCCC translation is an order of magnitude larger than alternative translation methods. The use of
access types and Unchecked_Conversion are clearly undesirable from a code readability and
understandability perspective. The CCCC code is not useful to evolve the system should later
changes be desired.

The access type forcing heap memory management is NOT recommended for mission-
critical/safety-critical systems. Heaps are dangerous and impact performance when garbage
collection must be performed to re-acquire unused blocks of memory. Stacks are more easily
controlled as stack elements are created and destroyed as practical. Further, stacks are safer than
heaps because when a heap is exceeded, the system crashes; when a stack is exceeded, only the task
owning the stack is effected. Code could terminate the task and reinitialize the task. In practice, safe
stack sizes can be engineered for any system where recursion is not used. Safe heaps are almost
impossible to manage/control.

PERFORMANCE

Performance was not measured for any of the translations. However, some comments can be
made based on the different approaches used by CCCC and APL. Neither the stack nor the heap
memory management scheme has a significant performance advantage. Memory management on the
stack is controlled as the stack is used; memory management on the heap must be performed when
the heap runs out of space or periodically using a process called garbage collection. As noted, the
CCCC code is an order of magnitude larger using the Unchecked_Conversion function pervasively.
This extra code does not add a burden for execution. Both the CCCC and APL when compiled
without optimization should execute at about the same speed. As most compilers have fine-tuned

M-6

optimizations for stack processing compared to heap processing, the APL translated code would be
expected to execute significantly faster than the CCCC translated code, when both are optimized.

POSITION TO REENGINEER

One motivation to translate code might be to reengineer the code for an evolved system. The APL
Ada Code appears to support this objective. The CCCC translated code appears to violate the reasons
for using Ada. It would be significantly easier to reengineer the original CMS-2 code than the
translated CCCC Ada. The use of CCCC translated code could be counterproductive to evolving a
CMS-2 application to an Ada application.

Subsequent sections contain the source code for the MK-2 CMS-2L, the MK-2 Ada produced by
the translators, and the MK-2 Ada that was manually translated.

M-7

ORIGINAL CMS-2L MK-2 FIRE CONTROL SYSTEM

KK2 SYSTEM S
COMMENT THIS CMS2 SYSTEM CONTAINS ONE SYS-DD (SYSD) AND

ONE SYS-PROC (SYSP) $
END-HEAD$
SYSD SYS-DD $

FKPI EQDALS 3.1416
FKPI2 EQUALS 2*FKPI

VRBL SODVTIME F P 0
VRBL ICNX I 32 S P 1
VRBL SUDVOSXP F P 0
VREL SODVOSYP F P 0
VRBL SUDVRAD1 F P 0
VRBL SODVRAD2 F P 0

constant PI
constant 2*PI

current system time in sec'' $
table index '' $
own ship x-position in yards •' $
own ship y-position in yards •■ $
x-position diff, in yards '' $
y-position diff, in yards •■ $

TABLE FTCONDAT V 1 99 $
FIELD FVEQRADG A 32 S 4 P 6975563.33 "earth radius in yards"$

END-TABLE FTCONDAT $

TABLE FTCSS V 5 99
FIELD FVTIME F P 0
FIELD FVTXP F P 0
FIELD FVTYP F P 0
FIELD FVTXV F P 0
FIELD FVTYV F P 0

END-TABLE FTCSS S

system solution table '' $
solution update time '' $
X position in yards '' $
Y position in yards '• $
X velocity in yards/sec ''
Y velocity in yards/sec *'

TABLE FTPKSS V 6 99
FIELD FVTXP F P 0
FIELD FVTYP F P 0
FIELD FVRNG F P 0
FIELD FVBRG F P 0
FIELD FVTGTLAT F P 0
FIELD FVTGTLON F P 0

END-TABLE FTPKSS $

PK system solution table •' $
PKed target X position in yards
PKed target Y position in yards
PKed target range in yards '' $
PKed target bearing in radians •
PKed target latitude '• $
PKed target longitude '• $

VR3L
VR3L
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL
VRBL

SUDVOSLT F P
SDDVOSLN F P •
SDDVRNG F
SDDVBRG F
SDDVLAT1 F
SODVLAT2 F
SUDVLON1 F
SODVLON2 F
(VRAD1,VRAD2)

32.0MFKPI2/360.
120.0MFKPI2/360,

' ' (parameter)
'' (parameter)
' ' (parameter)
'' (parameter)
'' (parameter)
'' (parameter)

F '' (parameter)

0) ''own ship latitude''$
0) "own ship longitude''$
range '' S
bearing '' $
input latitude ' ' $
output latitude'• $
input longitude •' $
output longitude ' • $
two ATAN arguments '' $

END-SYS-DD SYSD $

SYSP SYS-PROC $

FUNCTION SÜDPATAN (VRAD1,VRAD2) F S
SÜB-DD $

VRBL VATAN F $
END-SOB-DD $
if VRAD1 LT 0.00001 AND VRAD2 LT 0.00001 THEN

SET VATAN TO 0.0 $
ELSE

SET VATAN TO ATAN2(VRAD1,VRAD2) $
RETURN (VATAN) $

END-FUNCTION SUDPATAN $

M-8

(EXTDEF) PROCEDURE SODPKFCS $

COMMENT ==
COMMENT $

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

Segment:
CSCI Name:
TLCSC:
LLCSC:
UNIT:
Part Number
Classification:
Company_ID

FCS
TMAB
SOD
SÜDLTD
SODPKFCS
PRG528777
UNCLASSIFIED $
Raytheon, CAGE Code 49956

COMMENT
COMMENT
COMMENT

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

COMMENT
COMMENT
COMMENT

Library Name
Element Name
Revision Number
Revision Date, Time
Current Date, Time

MK2ECP6:[SRC.FC.TMAB.SÜD.SRC]
SUDPKFCS.SRC S
l 5
25-NOV-1992 10:57 $

3-MAR-1995 16:44 $

COMMENT Author: Mark Damiani $

COMMENT $

COMMENT Overview: This purpose of this procedure is to perform $
COMMENT the following for all FCS tactical/training $
COMMENT targets not including OTH targets: $
COMMENT 1) Compute PKed Target X Position. $
COMMENT 2) Compute PKed Target Y Position. $
COMMENT 3) Compute PKed Target Range $
COMMENT 4) Compute PKed Target Bearing $
COMMENT 5) Compute PKed Target Latitude and Longitude
COMMENT by calling the SUDPRBLL system common $
COMMENT routine. $

COMMENT
COMMENT
COMMENT

Effects:
$

COMMENT
COMMENT

Requirements Trace: $
$

COMMENT Algorithm: $
COMMENT $

COMMENT Notes: This procedure will be called during a SÜD Time $
COMMENT Dependent entrance. $

COMMENT

COMMENT

COMMENT

Exceptions Raised:

COMMENT

sudlocl sub-dd ''Unit Local Data'

vrbl SUDVDTME f
VRBL TGTLAT F
vrbl TGTLONG f

end-sub-dd sudlocl

'•Target Solution PK Delta Time''$
1'PKed Target Latitude ''$
''PKed Target Longitude''S

''End Unit Local Data'•$

M-9

COMMENT ===
- Compute FCS Position Kept Target X and Y Positions

COMMENT Set Target Solution Delta Time to current System Time
minus System Solution table Solution Update Time for
current ICN. $

set SUDVDTME to SUDVTIME - FTCSS (ICNX, FVTIME) $

COMMENT Compute FCS PK Target X Position. $

set FTPKSS(ICNX,FVTXP) to FTCSS (ICNX, FVTXP) +
(FTCSS(ICNX,FVTXV) * SUDVDTME) $

COMMENT Compute FCS PK Target Y Position. $

set FTPKSS(ICNX,FVTYP) to FTCSS (ICNX, FVTYP) +
(FTCSS(ICNX,FVTYV) * SUDVDTME) $

COMMENT ==
- Compute FCS Position Kept Target Range.

,=====$

set FTPKSS(ICNX,FVRNG) to SQRT((FTPKSS(ICNX,FVTXP) - SUDVOSXP) *
(FTPKSS(ICNX,FVTXP) - SUDVOSXP) +
(FTPKSS(ICNX,FVTYP) - SUDVOSYP) *
(FTPKSS(ICNX,FVTYP) - SUDVOSYP))$

if FTPKSS(ICNX, FVRNG) gt 999999 then
set FTPKSS (ICNX, FVRNG) to 999999S "Clip target range to MAX"

COMMENT ===
- Compute FCS Position Kept Target Bearing.

set SUDVRAD1 to FTPKSS(ICNX,FVTXP) - SUDVOSXP$
set S0DVRAD2 to FTPKSS(ICNX,FVTYP) - SUDVOSYP$

set FTPKSS(ICNX,FVBRG) to SDDPATAN(SUDVRAD1,SUDVRAD2)$

COMMENT ===_=========
PKed Target Latitude and PKed Target Longitude shall be
computed using the Range, Azimuth to Latitude,Longitude
(SODPRBLL) common conversion function.
Input parameters shall include current Own Ship Latitude
and Own Ship Longitude, PKed Target Range, and PKed Target
Bearing.
Output parameters shall be PKed Target Latitude and PKed
Target Longitude.
==m===s

set SUDVRNG to FTPKSS (ICNX, FVRNG) $ ' • convrt RNG to a 43 Float"
set SUDVBRG to FTPKSS(ICNX,FVBRG)$ "convrt BRG to a 43 Float"

SODPRBLL input SODVRNG, SUDVBRG, SUDVOSLT, SUDVOSLN
OUTPUT TGTLAT, TGTLONG$

COMMENT Save PKed Target Latitude in PK System Solution table.$

set FTPKSS(ICNX,FVTGTLAT) to TGTLAT $

COMMENT Save PKed Target Longitude in PK System Solution table.$

set FTPKSS(ICNX,FVTGTLON) to TGTLONG $

M-10

end-proc SUDPKFCS $

(EXTDEF) PROCEDURE SODPRBLL input SODVRNG,SÜDVBRG,SÜDVLAT1, SUDVLON1
output SUDVLAT2,SUDVLON2 $

COMMENT ===
COMMENT $

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

Segment:
CSCI Name:
TLCSC:
LLCSC:
UNIT:
Part Number
Classification:
Company_ID
$

FCS $
TMAB $
SUD S
SUDLTD $
SUDPRBLL $
PRG528777 $
UNCLASSIFIED
Raytheon, CAGE Code 49956 $

COMMENT
COMMENT

COMMENT Library Name
COMMENT Element Name
COMMENT Revision Number
COMMENT Revision Date, Time
COMMENT Current Date, Time
COMMENT $

MK2ECP6:[SRC.FC.TMAB.SUD.SRC]
SUDPRBLL.SRC $
2 $
27-APR-1993 16:28 S
3-MAR-1995 16:44 S

COMMENT
COMMENT

COMMENT Author: Jim Pryor (JRP), Bill Croasdale (WXC)

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

Overview: $
The Range/Bearing to Lat/Lon unit will $
calculate the latitude and longitude coordinates of a $
position represented by a range,bearing from the input$
latitude/longitude position. $

$
Effects: S

$
Requirements Trace: PROCESS_NAV $

$
Algorithm: $

theta = R/RE $
Target Latitude = $

Arcsin[sin(PO) * cos(theta) + $
cos(PO) * sint(theta) * cos(By)] $

$
Target Longitude = $

arctan2[sin(theta) * sin(By), $
cos(PO) * cos(theta) - $

sin(PO) * sin(theta) * cos(By)] + UO $
$

R = Range to target from input Lat/Lon(yds) $
By = Bearing to target from input Lat/Lon $
PO = input Latitude $
UO = input Longitude $
RE = Radius of the earth(from FTCONDAT) $

$
Notes: $

All angles(input/output) in floating point Radians, $
and all ranges in floating point yards. $

$
Exceptions Raised: $

$

COMMENT

LOCRBLL sub-dd $

vrbl RBLLTHET f
vrbl TEMPARG f

''interim value (R/REO
■'interim value for arcsin

M-ll

vrbl COSTHET f S "Cosine R/Re'
vrbl SINTHET f $ "Sin R/Re'
vrbl C0SLAT1 f $ "Cosine LAT1 *
vrbl SINLAT1 f $ "Sin LAT1'
vrbl COSBRG f S ''Cosine BRG '
vrbl SINBRG f $ "Sin BRG '

end-sub-dd LOCRBLL $

'' Conpute Theta = Target Range / Radius of Earth

set RBLLTHET to SUDVRNG / FTCONDAT(0,FVEQRADG) $

'' Save some CPU - Precompute SIN/COS terms ••

set COSTHET to COS(RBLLTHET)$ •
set SINTHET to SIN(RBLLTHET)$ '

set COSLAT1 to C0S(SÜDVLAT1)$ •
set SINLAT1 to SIN(SUDVLAT1)$ '

set COSBRG to COS(SODVBRG)$ •
set SINBRG to SIN(SUDVBRG)$ '

'' Compute Latitude of Target '

Cosine R/Re''
Sin R/Re"

Cosine LAT1''
Sin LAT1''

Cosine BRG''
Sin BRG"

set TEKPARG to SINLAT1 * COSTHET + COSLAT1 * SINTHET * COSBRG
set SUDVLAT2 to ASIN(TEMPARG)

" Compute Longitude of Target"
* * —— — ~_ t t

set S0DVL0N2 to SUDPATAN(SINTHET * SINBRG,
COSLAT1 * COSTHET -
SINLAT1 * SINTHET * COSBRG) + SUDVLON1 $

if SÜDVLON2 gt FKPI then set SUDVLON2 to SUDVLON2 - FKPI2S
"Bound LON to (-PI,PI)"

END-PROC SUDPRBLLS

END-SYS-PROC SYSP $
END-SYSTEM MK2 $

M-12

ADA TRANSLATION USING APL TRANSLATOR

with Basic_Defns;
use Basic_Defns;

package Mk2 is

FKPI constant FLOAT = 3.1416 ;
FKPI2 constant FLOAT = 2 * fkpi
sudvtime FLOAT = 0.0;
icnx INTEGERS32 := 1
sudvosxp FLOAT = 0.0;
sudvosyp FLOAT = 0.0;
sudvradl FLOAT = 0.0;
sudvrad2 FLOAT = 0.0;

type FTCONDAT_REC is record
fveqradg : FLOAT;

end record;

type FTCONDAT_TYPE is array (INTEGER range <>) of FTCONDAT_REC;
ftcondat : FTCONDATJTYPE (0 .. 98) :=

(0=> (fveqradg=>6975563.33),
1 .. 98 => (fveqradg=>0.0));

type FTCSS_REC is record
fvtime : FLOAT;
fvtxp : FLOAT;
fvtyp : FLOAT;
fvtxv : FLOAT;
fvtyv : FLOAT;

end record;

type FTCSS_TYPE is array (INTEGER range <>) of FTCSS_REC;
ftcss : FTCSS_TYPE (0 .. 98) :=

(0 .. 98 => (fvtime=>0.0, fvtxp=>0.0, fvtyp=>0.0,
fvtxv=>0.0, fvtyv=>0.0));

type FTPKSS_REC is record
fvtxp : FLOAT,
fvtyp : FLOAT
fvmg : FLOAT
fvbrg : FLOAT
fvtgtlat : FLOAT
fvtgtlon : FLOAT

end record;

type FTPKSS_TYPE is array (INTEGER range <>) of FTPKSS_REC;
ftpkss

sudvoslt
sudvosln
sudvrng
sudvbrg
sudvlatl
sudvlat2
sudvlonl
sudvlon2
vradl
vrad2

FTPKSSJTYPE (0
(0

98)

FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT

98 => (fvtxp=>0.0, fvtyp=>0.0, fvrng=>0.0,
fvbrg=>0.0, fvtgtlat=>0.0, fvtgtlon=>0.0));

:= 32.0;
:= -120.0;

SÜDPKFCS

Description:

procedure SUDPKFCS;

M-13

SUDPRBLL

Description:

procedure SUDPRBLL (sudvrng : in
sudvbrg : in FLOAT,
sudvlatl : in FLOAT,
sudvlonl : in FLOAT;
sudvlat2 : out FLOAT;
sudvlon2 : out FLOAT)

FLOAT;

end MJ:2;with Basic Defns;

M-14

use Basic_Defns;
with Mathpac;

package body Mk2 is

SÜDPATAN

Description:

function SUDPATAN (vradl : in FLOAT;
vrad2 : in FLOAT) return FLOAT;

~ MK2 SYSTEM ; ~ 1
~ END-HEAD ; ~ 4
~ SYSD SYS-DD ; ~ 5
~ END-SYS-DD SYSD ; ~ 49
~ SYSP SYS-PROC ; ~ 51
—@@ could not translate:
—@@ dd
—@@11
function SUDPATAN(vradl : in FLOAT;

vrad2 : in FLOAT) return FLOAT is
begin

SUB dd ; — 54
—@@ could not translate:
—@@ vrblvatanf
—@@13
— $$ -vrblvatanf ; — 55

-- $$ END - SUB - DD ; — 56
—@@ could not translate:
—@@ vatan
--6617
if vradl < 0.00001 and then vrad2 < 0.00001 then — 57

~vatan := 0.0 ; — 58
—@@ could not translate:
—86 vatan
—@6 could not translate:
—88 atan2
—@@20
else — 59

-vatan := ~atan2(vradl,vrad2) ; — 60
end if ;
—86 could not translate:
—@@ vatan
—6823
return (-vatan) ; — 61
end SÜDPATAN ; — 62
—@@ could not translate:
—86 sudloclsub
—86 could not translate:
—8@ dd
—@@30

procedure SUDPKFCS is — 64
begin

— 159

162

163

-- $$ -sudloclsub - -dd ;
—ee could not translate:
—e@ vrblsudvdtme f
—@@32

-- $$ -vrblsudvdtmef ;
—ee could not translate:
—ee vrbltgtlatf
—8834
— $$ -vrbltgtlatf ;

—ee could not translate:
—ee vrbltgtlongf

M-15

—6836
— S$ -vrbltgtlongf ; 164

—68 could not translate:
--98 end
—88 could not translate:
—66 sub
—66 could not translate:
--66 ddsudlocl
—6636
— $$ -end - -sub - -ddsudlocl ; — 166

—66 could not translate:
—66 sudvdtme
— 8640

-sudvdtme := sudvtime - ftcss(icnx).fvtime ; -- 178
—6943: could not typecast r.h.s. of assignment.
—86 Unknown name.
—66 could not translate:
—86 sudvdtme
—8644

ftpkss(icnx).fvtxp := ftcss(icnx).fvtxp + — 182
(ftcss(icnx).fvtxv * -sudvdtme) ; — 183

—8647: could not typecast r.h.s. of assignment.
—66 unknown name.
—68 could not translate:
—66 sudvdtme
—6648

ftpkss(icnx).fvtyp := ftcss(icnx).fvtyp + — 188
(ftcss(icnx).fvtyv * -sudvdtme) ; — 189

ftpkss(icnx).fvrng := Mathpac.Sqrt ((ftpkss(icnx).fvtxp - sudvosxp)
(ftpkss(icnx).fvtxp - sudvosxp) + — 198
(ftpkss(icnx).fvtyp - sudvosyp) * — 199
(ftpkss(icnx).fvtyp - sudvosyp)) ; — 200

if ftpkss(icnx).fvrng > 999999 then — 203
ftpkss(icnx).fvrng := 999999.0 ; -- 204

end if ;
sudvradl := ftpkss(icnx).fvtxp - sudvosxp ; — 210
sudvrad2 :■= ftpkss (icnx) .fvtyp - sudvosyp ; — 211
ftpkss(icnx).fvbrg := SUDPATAN (sudvradl , sudvrad2) ; — 213
sudvrng := ftpkss(icnx).fvrng ; — 228
sudvbrg := ftpkss(icnx).fvbrg ; — 229

—8663 could not typecast parameter list.
—66 Unknown name.
—66 could not translate:
—66 tgtlat
—Ö6 could not translate:
—86 tgtlong
—6664
SÜDPRBLL (sudvrng , sudvbrg , sudvoslt , sudvosln , -tgtlat , —

-tgtlong) ; __ 232
—8666: could not typecast r.h.s. of assignment.
--86 Unknown name.
—66 could not translate:
—86 tgtlat
--8667

ftpkss(icnx).fvtgtlat := -tgtlat ; — 236
—6669: could not typecast r.h.s. of assignment.
--86 Unknown name.
—66 could not translate:
—86 tgtlong
—8670

ftpkss(icnx).fvtgtlon := -tgtlong ; — 241
end SODPKFCS ; __ 244

procedure SÜDPRBLL(sudvrng : in FLOAT;
sudvbrg : in FLOAT;
sudvlatl : in FLOAT;
sudvlonl : in FLOAT;
sudvlat2 : out FLOAT;
sudvlon2 : out FLOAT) is

sudv-lon2_t : FLOAT ;
—66 could not translate:
—66 locrbllsub
—66 could not translate:
—86 dd
—6684

M-16

begin
-- $$ -locrbllsub - ~dd ;

—@e could not translate:
—ee vrblrbllthetf
—6686

-- $$ -vrblrbllthetf ;
—@@ could not translate:
—@@ vrbltempargf
—6688
— $$ -vrbltempargf ;

—@@ could not translate:
—@@ vrblcosthetf
—6690
— $$ ~vrblcosthetf ;

—@@ could not translate:
—@@ vrblsinthetf
—6692
— $$ -vrblsinthetf ;

—e@ could not translate:
—ee vrblcoslatlf
—6694

— $$ -vrblcoslatlf ;
—66 could not translate:
—ee vrblsinlatlf
—6696
— $$ -vrblsinlatlf ;

—ee could not translate:
—ee vrblcosbrgf
—6698
— $$ -vrblcosbrgf ;

—66 could not translate:
—ee vrblsinbrgf
—eeioo

— $$ -vrblsinbrgf ;
—ee could not translate:

248
358

361

— 362

— 364

— 365

366

— 367

— 368

— 369
d not translate:

—66 end
—66 could not translate:
—86 sub
—66 could not translate:
—66 ddlocrbll
—66102
— $$ -end sub ddlocrbll ; — 371

—66 could not translate:
—66 rbllthet
—66104

-rbllthet := sudvrng / ftcondat(0).fveqradg ; — 380
—66106 could not typecast parameter list.
—66 unknown name.
—66 could not translate:
—66 costhet
—66 could not translate:
—66 rbllthet
—6S107

-costhet := Mathpac.Cos (-rbllthet) ; — 386
—66109 could not typecast parameter list.
—66 unknown name.
—66 could not translate:
—66 sinthet
—66 could not translate:
—66 rbllthet
—66110

-sinthet := Mathpac.Sin (-rbllthet) ; — 387
—66 could not translate:
—66 coslatl
—66112

-coslatl := Mathpac.Cos (sudvlatl) ; — 389
—66 could not translate:
—66 sinlatl
—68114

-sinlatl := Mathpac.Sin (sudvlatl) ; — 390
—66 could not translate:
—66 cosbrg
—66116

-cosbrg := Mathpac.Cos (sudvbrg) ; — 392
—66 could not translate:
—66 sinbrg

M-17

—seile
-sinbrg := Mathpac.Sin (sudvbrg) ; 393

—8? could not translate:
—Se temparg
—68 could not translate:
--S§ sinlatl
—68 could not translate:
--68 costhet
—68 could not translate:
— 68 coslatl
—86 could not translate:
"68 sinthet
—86 could not translate:
—86 cosbrg
—86120

-temparg := -sinlatl * -costhet + -coslatl * -sinthet * -cosbrg
—86122: could not typecast r.h.s. of assignment.
—86 Unknown name.
—86123 could not typecast parameter list.
—88 Unknown name.
—68 could not translate:
—66 temoarg
—68124
sudvlat2 := Mathpac.Asin (-temparg) ; 400

—66128: could not typecast r.h.s. of assignment.
—66 Unknown name.
—86129 could not typecast parameter list.
—86 Unknown name.
—66 could not translate:
—88 sinthet
—68 could not translate:
—86 sinbrg
—66 could not translate:
—86 coslatl
—86 could not translate:
—66 costhet
—86 could not translate:
—86 sinlatl
—86 could not translate:
—66 sinthet
—66 could not translate:
—66 cosbrg
—86130

sudvlon2_t := SUDPATAN (-sinthet * -sinbrg , — 4 05
-coslatl * -costhet - — 406
-sinlatl * -sinthet * -cosbrg) + sudvlonl ; — 407

if sudvlon2 > fkpi then — 409
sudvlon2_t := sudvlon2_t - fkpi2 ;

end if ;
sudvlon2 := sudvlon2_t ; 412

end SÜDPRBLL ;

— END-SYS-PROC SYSP ; — 414
end Hk2 ; __ 415

M-18

APL TRANSLATOR COMMON PACKAGES

with System;
with UNCHECKED_CONVERSION;
package Basic_Defns is

— Unsigned INTEGER types.

subtype INTEGERU1 is INTEGER range 0 .

subtype INTEGERU2 is INTEGER range 0 .

subtype INTEGERU3 is INTEGER range 0 .

subtype INTEGERU4 is INTEGER range 0 .

subtype INTEGER05 is INTEGER range 0 .

subtype INTEGER06 is INTEGER range 0 .

subtype INTEGERU7 is INTEGER range 0 .

subtype INTEGERU8 is INTEGER range 0 .

subtype INTEGERU9 is INTEGER range 0 .

subtype INTEGERU10 is INTEGER range 0

subtype INTEGERU11 is INTEGER range 0

subtype INTEGERU12 is INTEGER range 0

subtype INTEGERU13 is INTEGER range 0

subtype INTEGERÜ14 is INTEGER range 0

subtype INTEGERU15 is INTEGER range 0

subtype INTEGERU16 is INTEGER range 0

subtype INTEGER017 is INTEGER range 0

subtype INTEGERU18 is INTEGER range 0

subtype INTEGERÜ19 is INTEGER range 0

subtype INTEGERU20 is INTEGER range 0

subtype INTEGERÜ21 is INTEGER range 0

subtype INTEGERÜ22 is INTEGER range 0

subtype INTEGERU23 is INTEGER range 0

subtype INTEGERU24 is INTEGER range 0

subtype INTEGERU25 is INTEGER range 0

subtype INTEGERU26 is INTEGER range 0

subtype INTEGERU27 is INTEGER range 0

subtype INTEGERU28 is INTEGER range 0

subtype INTEGERU29 is INTEGER range 0

subtype INTEGERU30 is INTEGER range 0

subtype INTEGERU31 is INTEGER range 0

. 1;

. 3;

. 7;

, 15;

. 31;

. 63;

. 127;

. 255;

, 511;

.. 1023;

.. 2047;

.. 4095;

. 8191;

. 16_383;

. 32J767;

.. 65_535;

. 131JD71;

. 262_143;

. 524_287;

• 1_048_575;

• 2_097_151;

■ 4_194_303;

,. 8_388_608;

,. 16_777_216;

,. 33_554_431;

. . 67_108_863;

. . 134_217_728;

. . 268_435_456;

,. 536_870_912;

. . 1_073_741_824;

. . 2 147 483 647;

M-19

— INTEGERÜ32 should be range 0 .. 4_294_967_296, but
— since Ada reserves the sign bit for its own use, and
— integers are a maximum of 4 bytes on the Verdix
— compiler, INTEGERU32 will have the same definition
-- as INTEGER031.
subtype INTEGERU32 is INTEGER range 0 .. 2_147_483_647;

— Signed INTEGER types.

subtype INTEGERS2 is INTEGER range

subtype INTEGERS3 is INTEGER range

subtype INTEGERS4 is INTEGER range

subtype INTEGERS5 is INTEGER range

subtype INTEGERS6 is INTEGER range

subtype INTEGERS7 is INTEGER range

subtype INTEGERS8 is INTEGER range

subtype INTEGERS9 is INTEGER range

subtype INTEGERS10 is INTEGER range

subtype INTEGERS11 is INTEGER range

subtype INTEGERS12 is INTEGER range

subtype INTEGERS13 is INTEGER range

subtype INTEGERS14 is INTEGER range

subtype INTEGERS15 is INTEGER range

subtype INTEGERS16 is INTEGER range

subtype INTEGERS17 is INTEGER range

subtype INTEGERS18 is INTEGER range

subtype INTEGERS19 is INTEGER range

subtype INTEGERS20 is INTEGER range

subtype INTEGERS21 is INTEGER range

subtype INTEGERS22 is INTEGER range

subtype INTEGERS23 is INTEGER range

subtype INTEGERS24 is INTEGER range

subtype INTEGERS25 is INTEGER range

subtype INTEGERS2 6 is INTEGER range

subtype INTEGERS27 is INTEGER range

subtype INTEGERS28 is INTEGER range

subtype INTEGERS29 is INTEGER range

subtype INTEGERS30 is INTEGER range

subtype INTEGERS31 is INTEGER range

subtype INTEGERS32 is INTEGER range

-1 .. 1;

-3 .. 3;

-7 . . 7;

-15 .. 15;

-31 .. 31;

-63 .. 63;

-127 .. 127;

-255 .. 255;

-511 .. 511;

-1023 .. 1023

-2047 .. 2047

-4095 .. 4095

-8191 .. 8191

-16_383 .. 16_ .383;

-32_767 .. 32_ 767;

-65_535 .. 65_ 535;

-131_071 .. 131_071

-262_143 .. 262_143

-524_287 .. 524_287

-1_048_575 .. 1_048_ _575

-2_097_151 .. 2_097_ 151

-4_194_303 .. 4_194_ _303

-8_388_608 .. 8_388_ 608

-16_777_215 .. 16_777_215;

-33_554_431 .. 33_554_431;

-67_108_863 .. 67_108_863;

-134_217_727 . . 134_ _217_ .727;

-268_435_455 . . 268_ _435_ 455;

-536_870_911 . . 536_ _870_ 911;

-1_073_741_823 • • 1. 073_ _741_823

-2 147 483 647 .. 2 147 483 647

M-20

— INTEGERS64 should be range -(2**64)+l .. (2**64)-l, but
integers are a maximum of 4 bytes on the Verdix
compiler, so INTEGERS64 will have the same definition

-- as INTEGERS32.
subtype INTEGERS64 is INTEGER range -2_147_483_647 .. 2_147_483_647;

— Fixed point definitions.
— type FIXED is delta (1/2_147_483_647);

— Used for tables with no storage type.

type WORD_ARRAY is array (INTEGER range <>) of INTEGERS32;

— used for simulating INVALID option on P-SWITCH calls.

INDEX_OUT_OF_RANGE : exception;

— Some useful conversion functions to take care of
— CORAD's.

function INT_to_ADDR is new
UNCHECKED_CONVERSION (INTEGER, System.ADDRESS) ;

function ADDR_to_INT is new
ONCHECKED_CONVERSION (System. ADDRESS, INTEGER);

— Some useful functions to eliminate the need for
— as many type conversions.

function "+" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;

function "+" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;

function *'-" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;

function "-" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;

function "*" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;

function "*" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;

function "/" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;

function "/" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;

function "<" (LEFT: in INTEGER; RIGHT: in FLOAT) return BOOLEAN;

function "<" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;

function ">" (LEFT: in INTEGER; RIGHT: in FLOAT) return BOOLEAN;

function ">" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;

function "<=" (LEFT: in INTEGER; RIGHT: in FLOAT) return BOOLEAN;

function "<=" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;

function ">=" (LEFT: in INTEGER; RIGHT: in FLOAT) return BOOLEAN;

function ">=" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;

pragma inline ("+", "-", "*", "/", "<", ">", "<=", ">=");

generic
type FIXED is delta <>;

package FIXED_C0NVERSI0N is
function "+*• (LEFT: in FIXED; RIGHT: in FLOAT) return FLOAT;

M-21

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:

' (LEFT:
' (LEFT:

ft* tt

ft * w

"/"
n /n

"<"
"<"
">"
">"
"< =
"< =
">=" (LEFT
">=" (LEFT

in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;
in FIXED;
in FLOAT;

RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:
RIGHT:

in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)
in FLOAT)
in FIXED)

return
return
return
return
return
return
return
return
return
return
return
return
return
return
return

FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

+" (LEFT:
+ " (LEFT:
-" (LEFT:
-" (LEFT:
*" (LEFT:
*" (LEFT:

(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:
(LEFT:

"/"
rt ^ tt

"<"
">"
">"
"<=
"<=" (LEFT
*>=" (LEFT
■•>=" (LEFT

pragma inline ("+",
end FIXED CONVERSION;

in INTEGER; RIGHT: in FIXED) return FIXED;
in FIXED; RIGHT: in INTEGER) return FIXED;
in INTEGER; RIGHT: in FIXED) return FIXED;
in FIXED; RIGHT: in INTEGER) return FIXED;
in INTEGER; RIGHT: in FIXED) return FIXED;
in FIXED; RIGHT: in INTEGER) return FIXED;
in INTEGER; RIGHT: in FIXED) return FIXED;
in FIXED; RIGHT: in INTEGER) return FIXED;
in INTEGER; RIGHT: in FIXED) return BOOLEAN;
in FIXED; RIGHT: in INTEGER) return BOOLEAN;
in INTEGER; RIGHT: in FIXED) return BOOLEAN;
in FIXED; RIGHT: in INTEGER) return BOOLEAN;
in INTEGER; RIGHT: in FIXED) return BOOLEAN;
in FIXED; RIGHT: in INTEGER) return BOOLEAN;
in INTEGER; RIGHT: in FIXED) return BOOLEAN;
in FIXED; RIGHT: in INTEGER) return BOOLEAN;

•*-" w*w tt In tt^tt tt^rt rtv—ft tt^_tti .

end Basic Defns;

M-22

ADA TRANSLATION USING CCCC TRANSLATOR

- MK2
WITH cms2_to_ada_predefined ;
USE cms2_to_ada_predefined ;
WITH ONCHECKED_CONVERSION ;
WITH SYSTEM ;
USE SYSTEM ;
PACKAGE MK2 IS
—SYSTEM
PACKAGE memory_use IS

FKPI : CONSTANT := 3.1416 ;
FKPI2 : CONSTANT := 2*FKPI ;
SUDVTIMEjnemory : FLOAT := 0.0
ICNX_memory : INTEGER := 1 ;
SUDVOSXPjmemory : FLOAT := 0.0
SUDVOSYP_memory : FLOAT := 0.0
SUDVRADljnemory : FLOAT := 0.0
SUDVRAD2_memory : FLOAT := 0.0
FTCONDAT_memory : ARRAY (0..98 ,
FTCSSjnemory : ARRAY (0..98 , 0.
FTPKSSjnemory : ARRAY (0..98 , 0
SUDVOSLTjnemory : FLOAT
SUDVOSLN_memory : FLOAT
SUDVRNG_memory : FLOAT ;
SUDVBRG_memory : FLOAT ;
SUDVLATl_memory : FLOAT
SODVLAT2_memory : FLOAT
SUDVLONl_memory : FLOAT
SUDVLON2_memory : FLOAT
VRADl_memory : FLOAT
VRAD2_memory : FLOAT
VATAN_memory : FLOAT .
SUDVDTMEjmemory : FLOAT
TGTLAT_memory : FLOAT ;
TGTLONG_memory : FLOAT
RBLLTHET_memory : FLOAT
TEMPARG_memory : FLOAT
COSTHET_memory : FLOAT
SINTHET_memory : FLOAT
COSLATljmemory : FLOAT
SINLATl_memory : FLOAT
COSBRG_memory : FLOAT ;
SINBRG_memory : FLOAT ;
exit index : INTEGER ;

0..0) OF cms2_word ;
4) OF cms2_word ;

 , ...5) OF cms2_word ;
:= 32.0*(FKPI2/360.0) ;
:= (-120.0)*(FKPI2/360.0) ;

END memory_use ;
S CMS2 SYSTEM CONTAINS ONE SYS-DD (SYSD) AND
-»if cvc>_nor\n t CVCD\ SYSP)

THIS
ONE SYS-PROC

USE memory_use ;
PACKAGE SYSD IS
--SYS-DD
TYPE SUDVTIME_item_type IS
RECORD
OVER : FLOAT := 0.0 ;

— current system time in sec
END RECORD;

TYPE SDDVTIME_item_pointer IS ACCESS SUDVTIME_item_type ;
TYPE SUDVTIME_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVTIME_one_pointer IS ACCESS SUDVTIME_one_type ;
FUNCTION SUDVTIME_item_address_access IS
NEW ONCHECKED_CONVERSION (SOÜRCE=>ADDRESS, TARGET=>SODVTIME_item_pointer)

t

SUDVTIME : SODVTIME_item_pointer:=SODVTIME_item_address_access(
SODVTIME_memory'ADDRESS) ;

FUNCTION SUDVTIME_one_address_access IS
NEW ÜNCHECKED_CONVERSION (SOüRCE=>ADDRESS, TARGET=>SUDVTIME_one_pointer) ,

SUDVTIME_one : SUDVTIME_one_pointer:=SUDVTIME_one_address_access(

M-23

SUDVTIME_memory'ADDRESS) ;
TYPE ICNX_item_type IS
RECORD
OVER : INTEGER := 1 ;

— table index
END RECORD;

TYPE ICNX_item_pointer IS ACCESS ICNX_item_type ;
TYPE ICNX_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE ICNX_one_pointer IS ACCESS ICNX_one_type ;
FUNCTION ICNX_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS,TARGET=>ICNX_item_pointer) ;
ICNX : ICNX_item_pointer:=ICNX_item_address_access(ICNX_memory'ADDRESS) ;

FUNCTION ICNX_one_address_access IS
NEK UNCHECKED_CONVERSION(SOORCE=>ADDRESS,TARGET=>ICNX_one_pointer) ;
ICNX_one : ICNX_one_pointer :=ICNX_one_address_access (ICNX_memory'ADDRESS)

TYPE SDDVOSXP_item_type IS
RECORD
OVER : FLOAT := 0.0 ;

— own ship x-position in yards
END RECORD;

TYPE SODVOSXP_item_pointer IS ACCESS SUDVOSXP_item_type ;
TYPE SüDVOSXP_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SODVOSXP_one_pointer IS ACCESS SUDVOSXP_one type ;
FUNCTION SUDVOSXP_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVOSXP_item_pointer)

SODVOSXP : SUDVOSXP_item_pointer:=SUDVOSXP_item address access{
SUDVOSXP_memory'ADDRESS) ;

FUNCTION SUDVOSXP_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVOSXP_one_pointer) ;

SUDVOSXP_one : SDDVOSXP_one_pointer:=SUDVOSXP_one address access!
SUDVOSXPjmemory'ADDRESS) ;

TYPE SUDVOSYP_item_type IS
RECORD
OVER : FLOAT := 0.0 ;

— own ship y-position in yards
END RECORD;

TYPE SUDVOSYP_item_pointer IS ACCESS SUDVOSYP_item_type ;
TYPE SDDVOSYP_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SODVOSYP_one_pointer IS ACCESS SUDVOSYP_one type ;
FUNCTION SUDVOSYP_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SODVOSYP_item_pointer)

SUDVOSYP : SUDVOSYP_item_pointer:=SUDVOSYP_item_address access(
SUDVOSYP^emory'ADDRESS) ;

FUNCTION SUDVOSYP_one_address_access IS
NEW UNCHECKED_CONVERSION(SODRCE=>ADDRESS,TARGET=>SUDVOSYP_one_pointer) ;

SODVOSYP_one : SUDVOSYP_one_pointer:=SUDVOSYP_one_address access!
SUDVOSYP^emory'ADDRESS) ; _

TYPE SUDVRADl_itera_type IS
RECORD
OVER : FLOAT := 0.0 ;

— x-position diff, in yards
END RECORD;

TYPE SUDVRADl_item_pointer IS ACCESS SUDVRADl_item_type ;
TYPE SUDVRADl_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SÜDVRADl_one_pointer IS ACCESS SODVRAD1 one type ;
FJ1.-CTION SUDVRADl_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVRADl_item_pointer)

SUDVRAD1 : SUDVRADl_item_pointer:=SUDVRADl_item_address access!
SOOVRADl^emory" ADDRESS) ;

FUNCTION SUDVRADl_one_address_access IS
NEW UNCHECKED_CONVERSION (SOORCE=>ADDRESS, TARGET=>SUDVRADl_one_pointer) ;

SODVRADl_one : SODVRADl_one_pointer:=SUDVRADl_one_address access!
SUDVRADl_memory'ADDRESS) ;

TYPE SDDVRAD2_item type IS

M-24

RECORD
OVER : FLOAT := 0.0 ;

— y-position diff, in yards
END RECORD;

TYPE SUDVRAD2_item_pointer IS ACCESS SUDVRAD2_item_type ;
TYPE SUDVRAD2_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVRAD2_one_pointer IS ACCESS SUDVRAD2_one_type ;
FUNCTION SUDVRAD2_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVRAD2_item_pointer)

SÜDVRAD2 : SÜDVRAD2_item_pointer:=SUDVRAD2_item_address_access(
SODVRAD2_memory'ADDRESS) ;

FUNCTION SUDVRAD2_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SODVRAD2_one_pointer) ;

SUDVRAD2_one : SUDVRAD2_one_pointer:=SUDVRAD2_one_address_access(
SUDVRAD2_meitiory'ADDRESS) ;

TYPE FTCONDAT_item_type IS
RECORD
FVEQRADG : fixed32s4 ;

END RECORD;

TYPE FTCONDAT_one_type IS ARRAY (0..98) OF cms2_word ;
TYPE FTCONDAT_one_pointer IS ACCESS FTCONDAT_one_type ;
TYPE FTCONDAT_words_type IS ARRAY (0..98 , 0..0) OF cms2_word ;
TYPE FTCONDAT_words_pointer IS ACCESS FTCONDAT_words_type ;
TYPE FTCONDAT_type IS ARRAY (0..98) OF FTCONDAT_item_type ;
TYPE FTCONDAT_item_pointer IS ACCESS FTCONDAT_type ;
FUNCTION FTCONDAT_one_address_access IS
NEW ÜNCHECKED_CONVERSION (SOURCE=>ADDRESS,TARGET=>FTCONDAT_one_pointer) ;

FTCONDAT_one : FTCONDAT_one_pointer :=FTCONDAT_one_address_access (
FTCONDAT_memory'ADDRESS) ;

FUNCTION FTCONDAT_words_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>FTCONDAT_words_pointer)

FTCONDAT_words : FTCONDAT_words_pointer:=FTCONDAT_words_address_access (
FTCONDAT_one.ALL'ADDRESS) ;

FUNCTION FTCONDAT_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>FTCONDAT_item_pointer)

FTCONDAT : FTCONDAT_item_pointer ;
TYPE FTCSS_item_type IS
RECORD
FVTIME : FLOAT ;
— solution update time
FVTXP : FLOAT ;
— X position in yards
FVTYP : FLOAT ;
— Y position in yards
FVTXV : FLOAT ;
— X velocity in yards/sec
FVTYV : FLOAT ;

— Y velocity in yards/sec
END RECORD;

TYPE FTCSS_one_type IS ARRAY (0..494) OF cms2_word ;
TYPE FTCSS_one_pointer IS ACCESS FTCSS_one_type ;
TYPE FTCSS_words_type IS ARRAY (0..98 , 0..4) OF cms2_word ;
TYPE FTCSS_words_pointer IS ACCESS FTCSS_words_type ;
TYPE FTCSS_type IS ARRAY (0..98) OF FTCSS_item_type ;
TYPE FTCSS_item_pointer IS ACCESS FTCSS_type ;
FUNCTION FTCSS_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>FTCSS_one_pointer) ;
FTCSS_one : FTCSS_one_pointer:=FTCSS_one_address_access(FTCSS_memory'
ADDRESS) ;

FUNCTION FTCSS_words_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>FTCSS_WOrds_pointer) ;
FTCSS_words : FTCSS_words_jpointer:=FTCSS_words_address_access (FTCSS_one.
ALL'ADDRESS) ;

FUNCTION FTCSS_item_address_access IS
NEW UNCHECKED_CONVERSION (SOÜRCE=>ADDRESS, TARGET=>FTCSS_item_pointer) ;
FTCSS : FTCSS_item_pointer ;
TYPE FTPKSS_item_type IS
RECORD

M-25

FVTXP : FLOAT ;
— PKed target X position in yards
FVTYP : FLOAT ;
— PKed target Y position in yards
FVRNG : FLOAT ;
— PKed target range in yards
FVBRG : FLOAT ;
— PKed target bearing in radians
FVTGTLAT : FLOAT ;
— PKed target latitude
FVTGTLOK : FLOAT ;

— PKed target longitude
END RECORD;

TYPE FTPKSS_one_type IS ARRAY (0..593) OF cms2 word ;
TYPE FTPKSS_one_pointer IS ACCESS FTPKSS_one_type ;
TYPE FTPKSS_words_type IS ARRAY (0..98 , 0..5) OF cms2 word ;
TYPE FTPKSS_wordsjpointer IS ACCESS FTPKSS_words type ;~
TYPE FTPKSS_type IS ARRAY (0..98) OF FTPKSS item type ;
TYPE FTPKSS_item_pointer IS ACCESS FTPKSS type ; ~
FUNCTION FTPKSS_one_address_access IS
NEW ONCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>FTPKSS_one pointer) ;
FTPKSS_one : FTPKSS_one_pointer:=FTPKSS one address access(FTPKSS memory*
ADDRESS) ; - - - 1

FUNCTION FTPKSS_words_address_access IS
NEW ÜNCHECKED_CONVERSION(SOÜRCE=>ADDRESS, TARGET=>FTPKSS_words_pointer) ;

FTPKSS_words : FTPKSS_words_pointer:=FTPKSS words address access(
FTPKSS_one.ALL'ADDRESS) ; ~

FUNCTION FTPKSS_item_address_access IS
NEW ÜNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>FTPKSS item pointer) ;
FTPKSS : FTPKSS_item_pointer ; ~~
TYPE SODVOSLT_item_type IS
RECORD
OVER : FLOAT := 32.0*(FKPI2/360.0) ;

--own ship latitude
END RECORD;

TYPE SUDVOSLT_item_pointer IS ACCESS SUDVOSLT item type ;
TYPE SODVOSLT_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVOSLT_one_pointer IS ACCESS SUDVOSLT one type ;
FUNCTION SUDVOSLT_item_address_access IS
NEW DNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVOSLT_item_pointer)

SDDVOSLT : SUDVOSLT_item_pointer:=SUDVOSLT_item address access(
SUDVOSLTjnemory' ADDRESS) ; "~

FUNCTION SUDVOSLT_one_address_access IS
NW tJNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVOSLT_one_pointer) ;

SUDVOSLT_one : SUDVOSLT_one_pointer:=SUDVOSLT one address access(
SUDVOSLT_memory'ADDRESS) ; _ _

TYPE SUDVOSLN_item_type IS
RECORD
OVER : FLOAT := (-120.0)*(FKPI2/360.0) ;

—own ship longitude
END RECORD;

TYPE SUDVOSLN_item_pointer IS ACCESS SUDVOSLN_item type ;
TYPE SUDVOSLN_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVOSLN_one_pointer IS ACCESS SUDVOSLN one type ;
FUNCTION SUDVOSLN_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVOSLN_item_pointer)

SUDVOSLN : SUDVOSLN_item_pointer:=SUDVOSLN item address access(
SUDVOSLN_memory'ADDRESS) ; _ _

FUNCTION SUDVOSLN_one_address_access IS
Nrrf UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVOSLN_one_pointer) ;

SUDVOSLN_one : SUDVOSLN_one_pointer:=SUDVOSLN one address access!
SUDVOSLNjnemory'ADDRESS) ; _

TYPE SUDVRNG_item_type IS
RECORD
OVER : FLOAT ;

-- (parameter) range
END RECORD;

M-26

TYPE SUDVRNG_item_pointer IS ACCESS SUDVRNG_item_type ;
TYPE SUDVRNG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SÜDVRNG_one_pointer IS ACCESS SUDVRNG_one_type ;
FUNCTION SUDVRNG_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVRNG_item_pointer)

SÜDVRNG : SUDVRNG_item_pointer:=SUDVRNG_item_address_access(
SUDVRNG_memory'ADDRESS) ;

FUNCTION SUDVRNG_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVRNG_one_J>ointer) ;
SUDVRNG_one : SUDVRNG_one_pointer:=SUDVRNG_one_address_access(
SÜDVRNG_memory'ADDRESS) ;

TYPE SUDVBRG_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) bearing
END RECORD;

TYPE SUDVBRG_item_pointer IS ACCESS SUDVBRG_item_type ;
TYPE SUDVBRG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVBRG_one_pointer IS ACCESS SUDVBRG_one_type ;
FUNCTION SUDVBRG_item_address_access IS
NEW UNCHECKED_CONVERSION(SOORCE=>ADDRESS,TARGET=>SUDVBRG_item_pointer) ,

SÜDVBRG : SUDVBRG_item_pointer:=SUDVBRG_item_address_access(
SUDVBRG_memory'ADDRESS) ;

FUNCTION SUDVBRG_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVBRG_one_pointer) ;
SUDVBRG_one : SUDVBRG_one_pointer:=SUDVBRG_one_address_access(

SUDVBRG_memory'ADDRESS) ;
TYPE SUDVLATl_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) input latitude
END RECORD;

TYPE SODVLATl_item_pointer IS ACCESS SUDVLATl_item_type ;
TYPE SüDVLATl_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVLATl_one_pointer IS ACCESS SUDVLATl_one_type ;
FUNCTION SUDVLATl_item_address_access IS
NEW UNCHECKED_CONVERSION(SOORCE=>ADDRESS,TARGET=>SUDVLATl_item_pointer)

SODVLAT1 : SüDVLATl_item_pointer:=SüDVLATl_item_address_access(
SUDVLATljmemory'ADDRESS) ;

FUNCTION SUDVLATl_one_address_access IS
NEW ONCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SÜDVLATl_one_pointer) i

SUDVLATl_one : SUDVLATl_one_pointer:=SUDVLATl_one_address_access(
SüDVLATl_memory'ADDRESS) ;

TYPE SUDVLAT2_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) output latitude
END RECORD;

TYPE SUDVLAT2_item_pointer IS ACCESS StJDVLAT2_item_type ;
TYPE SUDVLAT2_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SUDVLAT2_one_pointer IS ACCESS SUDVLAT2_one_type ;
FUNCTION SUDVLAT2_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVLAT2_item_pointer)

SUDVLAT2 : SUDVLAT2_item_pointer:=SUDVLAT2_item_address_access(
SUDVLAT2_memory'ADDRESS) ;

FUNCTION SUDVLAT2_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVLAT2_onej>Ointer) ,

SUDVLAT2_one : SUDVLAT2_one_pointe r:=SUDVLAT2_one_addre s s_acce s s (
SUDVLAT2_memory'ADDRESS) ;

TYPE SUDVLONl_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) input longitude
END RECORD;

TYPE SUDVLONl_item_pointer IS ACCESS SUDVLONl_item_type ;
TYPE SUDVLONl_one_type IS ARRAY (0..0) OF cms2_word ;

M-27

TYPE SUDVLONl_one_pointer IS ACCESS SUDVL0N1 one type ;
FUNCTION SUDVLONl_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVLONl_item_pointer)

SDDVLON1 : SUDVLONl_item_pointer:=SUDVLONl item address access(
SUDVLONl_memory'ADDRESS) ; _ _ _

FUNCTION SUDVLONl_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SUDVLONl_one_pointer) ;

SUDVLONl_one : SUDVLONl_one_pointer:=S0DVL0N1 one address access!
SDDVLONl_memory'ADDRESS) ; ~

TYPE SUDVLON2_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) output longitude
END RECORD;

TYPE SDDVLON2_item_pointer IS ACCESS SUDVLON2 item type ;
TYPE SUDVLON2_one_type IS ARRAY (0..0) OF cms2 word ;
TYPE SUDVLON2_one_pointer IS ACCESS SODVLON2 one type ;
FUNCTION SUDVLON2_item_address_access IS ~ ~
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVLON2_item_pointer)

SUDVLON2 : SUDVLON2_item_pointer:=SUDVLON2 item address access(
SUDVLON2_memory'ADDRESS) ; ~ ~

FUNCTION SUDVLON2_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVLON2_one_pointer) ;

SUDVLON2_one : SDDVLON2_one_pointer:=SUDVLON2 one address access!
SUDVLON2_memory'ADDRESS) ; _ _ _

TYPE VRADl_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) two ATAN arguments
END RECORD;

TYPE VRADl_item_pointer IS ACCESS VRADl_item_type ;
TYPE VRADl_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE VRADl_onejpointer IS ACCESS VRADl_one type ;
FUNCTION VRADl_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>VRADl itempointer) ;

VRAD1 : VRADl_item_pointer:=VRADl item address access(VRAD1 memory'
ADDRESS) ; _ _ _ i

FUNCTION VRADl_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>VRADl_one pointer) ;

VRADl_one : VRADl_one_pointer:=VRAD1 one address access(VRAD1 memorv'
ADDRESS) ; _ _ _ i

TYPE VRAD2_item_type IS
RECORD
OVER : FLOAT ;

— (parameter) two ATAN arguments
END RECORD;

TYPE VRAD2_item_pointer IS ACCESS VRAD2_item type ;
TYPE VRAD2_one_type IS ARRAY (0..0) OF cms2~word ;
TYPE VRAD2_one_pointer IS ACCESS VRAD2_one type ;
FUNCTION VRAD2_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>VRAD2_item_pointer) ;

VRAD2 : VRAD2_item_jpointer :=VRAD2 item address access (VRAD2 memorv'
ADDRESS) ; ~ -

FUNCTION VRAD2_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>VRAD2_one_pointer) ;

VRAD2_one : VRAD2_one_pointer:=VRAD2 one address access(VRAD2 memorv'
ADDRESS) ; ~ 3

END SYSD ;
USE memory_use ;
PACKAGE SYSP IS
—SYS-PROC
FUNCTION SODPATAN (SUDPATAN_VRAD1 : IN FLOAT ; SUDPATAN_VRAD2 : IN FLOAT

RETURN INTEGER ;
PROCEDURE SUDPKFCS ;
PROCEDURE SÜDPRBLL (SODPRBLL_SUDVRNG : IN FLOAT ; SUDPRBLL SUDVBRG : IN

FLOAT ; S0DPRBLL_S0DVLAT1 : IN FLOAT ; SUDPRBLL_SÜDVL0N1 7 IN FLOAT ;
SUD?RBLL_SODVLAT2 : OUT FLOAT ; SUDPRBLL SUDVLON2 : OUT FLOAT) ■

END SYSP ;

M-28

USE memory_use ;
USE SYSD ;
USE SYSP ;
PACKAGE extdef IS

PROCEDURE SUDPKFCS RENAMES SYSP.SUDPKFCS ;
PROCEDURE SUDPRBLL (SUDPRBLL_SUDVRNG : IN FLOAT ; SUDPRBLL_SUDVBRG : IN

FLOAT ; SODPRBLL_SUDVLATl : IN FLOAT ; SUDPRBLL_SUDVLONl : IN FLOAT ;
SUDPRBLL_SÜDVLAT2 : OUT FLOAT ; SUDPRBLL_SUDVLON2 : OUT FLOAT) RENAMES
SYSP.SUDPRBLL ;

END extdef ;
END MK2 ;

M-29

WITH cms2_to_ada_predefined ;
OSE cir,s2_to_ada_predefined ;
WITH UNCHECKED_CONVERSION ;
WITH SYSTEM ;
USE SYSTEM ;
WITH math_lib_cms2 ;
DSE math_lib_cms2 ;
WITH MK2 ;
USE KK2 ;
PACKAGE BODY KK2 IS

OSE memory_use ;
OSE SYSD ;
USE SYSP ;
PACKAGE BODY SYSD IS

PROCEDURE FTCONDAT_item_address_access_init IS
p : FTCONDAT_item_pointer:=FTCONDAT item address access(FTCONDAT one

ALL'ADDRESS) ; _ ~" _ -
BEGIN

p.ALL(O).FVEQRADG := 6975563.33 ;
FTCONDAT := p ;

END FTCONDAT_item_address_access_init ;
PROCEDURE FTCSS_item_address_access_init IS

p : rrcss_item_pointer:=FTCSS_item_address_access(FTCSS_one.ALL'ADDRESS

BEGIN
p.ALL(O).FVTIME := 0.0 ;
p.ALL(O) .FVTXP := 0.0
p.ALL(O).FVTYP := 0.0
p.ALL(O).FVTXV := 0.0
p.ALL(O) .FVTYV := 0.0
FTCSS := p ;

END FTCSS_item_address_access_init ;
PROCEDURE FTPKSS_item_address_access_init IS
p : FTPKSS_item_pointer:=FTPKSS item address access(FTPKSS one.ALL'

ADDRESS) ; _ _ _
BEGIN

p.ALL(O).FVTXP := 0.0 ;
p.ALL(O).FVTYP := 0.0 ;
p.ALL(O).FVRNG := 0.0 ;
p.ALL(O) .FVBRG := 0.0 ;
p.ALL(O).FVTGTLAT := 0.0 ;
p.ALL(O).FVTGTLON := 0.0 ;
FTPKSS := p ;

END FTPKSS_item_address_access init ;
END SYSD ;

M-30

USE memory_use ;
USE SYSD ;
USE SYSP ;
PACKAGE BODY SYSP IS

FUNCTION SUDPATAN (SUDPATAN_VRAD1
) RETURN INTEGER

IS
TYPE VATAN_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

IN FLOAT ; SUDPATAN VRAD2 : IN FLOAT

TYPE VATAN_item_pointer IS ACCESS VATAN_item_type ;
TYPE VATAN_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE VATAN_one_pointer IS ACCESS VATAN_one_type ;
FUNCTION VATAN_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>VATAN_item_pointer) ;

VATAN : VATAN_item_pointer:=VATAN_item_address_access (VATAN_memory'
ADDRESS) ;

FUNCTION VATAN_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>VATAN_one_pointer) ;

VATAN_one : VATAN_one_pointer:=VATAN_one_address_access(VATAN_memory'
ADDRESS) ;

BEGIN
VRAD1.ALL.OVER := SUDPATAN_VRAD1 ;
VRAD2.ALL.OVER := SUDPATAN_VRAD2 ;
IF VRAD1. ALL. OVER<0. 00001 AND VRAD2 .ALL.OVER<0 . 00001 THEN
VATAN.ALL.OVER := 0.0 ;

ELSE
VATAN.ALL.OVER := ATAN2(VRAD1.ALL.OVER,VRAD2.ALL.OVER) ;

END IF;
RETURN INTEGER (VATAN. ALL.OVER) ;

END SUDPATAN ;
PROCEDURE SUDPKFCS IS

Segment:
CSCI Name:
TLCSC:
LLCSC:
UNIT:
Part Number
Classification:
Company_ID

FCS
TMAB
SUD
SUDLTD
SUDPKFCS
PRG528777
UNCLASSIFIED
Raytheon, CAGE Code 49956

Library Name
Element Name
Revision Number
Revision Date, Time
Current Date, Time

MK2ECP6:[SRC.FC.TMAB.SUD.SRC]
SUDPKFCS.SRC
1
25-NOV-1992 10:57
3-MAR-1995 16:44

Author: Mark Damiani

Overview: This purpose of this procedure is to perform
the following for all FCS tactical/training
targets not including OTH targets:
1) Compute PKed Target X Position.
2) Compute PKed Target Y Position.
3) Compute PKed Target Range
4) Compute PKed Target Bearing
5) Compute PKed Target Latitude and Longitude

by calling the SUDPRBLL system common
routine.

Effects:

Requirements Trace:

M-31

Algorithm:

Notes: This procedure will be called during a SUD Time
Dependent entrance.

Exceptions Raised:

TYPE SÜDVDTME_item_type IS
RECORD
OVER : FLOAT ;

—Target Solution PK Delta Time
END RECORD;

TYPE SUDVDTME_item_pointer IS ACCESS SUDVDTME_item_type ;
TYPE SODVDTHE_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SÜDVDTME_one_pointer IS ACCESS SUDVDTME_one_type ;
FUNCTION SODVDTME_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVDTME_item_pointer

SÜDVDTHE : SüDVDTME_item_pointer:=SUDVDTME_item_address access!
SUDVDTKEjnemory'ADDRESS) ;

FUNCTION SODVDTME_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SUDVDTME_one_pointer)

SODVDTME_one : SUDVDTME_one_pointer:=SUDVDTME_one_address access)
SODVDTMEjnemory'ADDRESS) ;

TYPE TGTLAT_item_type IS
RECORD
OVER : FLOAT ;

—PKed Target Latitude
END RECORD;

TYPE TGTLAT_item_pointer IS ACCESS TGTLAT_item_type ;
TYPE TGTLAT_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE TGTLAT_one_pointer IS ACCESS TGTLAT_one_type ;
FUNCTION TGTLAT_item_address_access IS
NEW DlCCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>TGTLAT_item_pointer)

TGTLAT : TGTLAT_item_pointer:-TGTLAT item address access(TGTLAT memory'
ADDRESS) ; ~

FUNCTION TGTLAT_one_address_access IS
NEW DNCHECKED_CONVERSION (SOORCE=>ADDRESS, TARGET=>TGTLAT_one_pointer) ;

TGTLAT_one : TGTLAT_one_pointer:=TGTLAT_one_address access(
TGTLAT_memory'ADDRESS) ;

TYPE TGTLONG_item_type IS
RECORD
OVER : FLOAT ;

—PKed Target Longitude
END RECORD;

TYPE TGTLONG_item_pointer IS ACCESS TGTLONG_item_type ;
TYPE TGTLONG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE TGTLOHG_one_pointer IS ACCESS TGTLONG_one_type ;
FUNCTION TGTLONG_item_address_access IS
NEW UNCHECKED_CONVERSION{SOURCE=>ADDRESS,TARGET=>TGTLONG_item_pointer)

TGTLONG : TGTLONG_item_pointer:=TGTLONG_item_address access(
TGTLONGjnemory'ADDRESS) ;

FUNCTION TGTLONG_one_address_access IS
NEW OTCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>TGTLONG_one_pointer)

TGTLONG_one : TGTLONG_one_pointer:=TGTLONG_one_address access (
TGTLONGjnemory'ADDRESS) ;

- Compute FCS Position Kept Target X and Y Positions

Set Target Solution Delta Time to current System Time
minus System Solution table Solution Update Time for
current ICN.

BEGIN
SUDVDTME. ALL. OVER := SUDVTIME. ALL. OVER-FTCSS .ALL (ICNX .ALL. OVER) .

FVTIKE ;
Compute FCS PK Target X Position.

M-32

FTPKSS.ALL(ICNX.ALL.OVER).FVTXP := FTCSS.ALL(ICNX.ALL.OVER) .FVTXP+(
FTCSS.ALL(ICNX.ALL.OVER).FVTXV*SODVDTME.ALL.OVER) ;

Compute FCS PK Target Y Position.
FTPKSS. ALL (ICNX. ALL. OVER) . FVTYP := FTCSS.ALLdCNX.ALL.OVER) .FVTYP+(
FTCSS.ALLdCNX.ALL.OVER) .FVTYV*SÜDVDTME.ALL.OVER) ;

- Compute FCS Position Kept Target Range.

FTPKSS. ALLdCNX. ALL. OVER) .FVRNG := SQRT ((FTPKSS. ALL (ICNX. ALL. OVER) .
FVTXP-SUDVOSXP. ALL. OVER) * (FTPKSS .ALL (ICNX. ALL.OVER) . FVTXP-SUDVOSXP.
ALL.OVER) + (FTPKSS.ALL(ICNX. ALL.OVER).FVTYP-SUDVOSYP.ALL.OVER)*(
FTPKSS.ALL(ICNX.ALL.OVER).FVTYP-SUDVOSYP.ALL.OVER)) ;

IF FTPKSS ..ALL (ICNX.ALL.OVER) .FVRNG> FLOAT (999999) THEN
FTPKSS.ALL(ICNX.ALL.OVER).FVRNG := FLOAT(999999) ;

Compute FCS Position Kept Target Bearing.

— Clip target range to MAX
END IF;
SUDVRAD1.ALL.OVER := FTPKSS.ALL (ICNX.ALL.OVER) .FVTXP-SUDVOSXP.ALL.

OVER ;
SÜDVRAD2.ALL.OVER := FTPKSS.ALLdCNX.ALL.OVER) .FVTYP-SUDVOSYP.ALL.

OVER ;
FTPKSS. ALL (ICNX. ALL. OVER) . FVBRG : = FLOAT {SUDPATAN (SUDVRAD1. ALL. OVER,

SUDVRAD2.ALL.OVER)) ;

PKed Target Latitude and PKed Target Longitude shall be
computed using the Range, Azimuth to Latitude,Longitude
(SUDPRBLL) common conversion function.
Input parameters shall include current Own Ship Latitude
and Own Ship Longitude, PKed Target Range, and PKed Target
Bearing.
Output parameters shall be PKed Target Latitude and PKed
Target Longitude.

SUDVRNG.ALL.OVER := FTPKSS.ALL(ICNX.ALL.OVER) .FVRNG ;
SUDVBRG.ALL.OVER := FTPKSS. ALL (ICNX.ALL.OVER) .FVBRG ;
SUDPRBLL (SUDVRNG.ALL.OVER , SUDVBRG.ALL.OVER , SUDVOSLT.ALL.OVER ,

SUDVOSLN.ALL.OVER , TGTLAT.ALL.OVER , TGTLONG.ALL.OVER) ;
Save PKed Target Latitude in PK System Solution table.

FTPKSS. ALL (ICNX. ALL. OVER) . FVTGTLAT := TGTLAT. ALL. OVER ;
Save PKed Target Longitude in PK System Solution table.

FTPKSS. ALL (ICNX. ALL. OVER) .FVTGTLON := TGTLONG. ALL. OVER ;
END SUDPKFCS ;
PROCEDURE SUDPRBLL (SUDPRBLL_SUDVRNG : IN FLOAT ; SUDPRBLL_SUDVBRG : IN

FLOAT ; SUDPRBLL_SUDVLAT1 : IN FLOAT ; SUDPRBLL_SUDVLONl : IN FLOAT ;
SUDPRBLL SUDVLAT2 : OUT FLOAT ; SUDPRBLL SUDVLON2 : OUT FLOAT) IS

Segment: FCS
CSCI Name: TMAB
TLCSC: SUD
LLCSC: SUDLTD
UNIT: SUDPRBLL
Part Number PRG528777
Classification: UNCLASSIFIED
Company_ID Raytheon, CAGE Code 49956

Library Name MK2ECP6:[SRC.FC.TMAB.SUD.SRC]
Element Name SUDPRBLL.SRC
Revision Number 2
Revision Date, Time 27-APR-1993 16:28
Current Date, Time 3-MAR-1995 16:44

Author: Jim Pryor (JRP), Bill Croasdale (WXC)
Overview:

The Range/Bearing to Lat/Lon unit will
calculate the latitude and longitude coordinates of a
position represented by a range,bearing from the input

M-33

latitude/longitude position.

Effects:

Requirements Trace: PROCESS_NAV

Algorithm:
theta = R/RE
Target Latitude =

Arcsin[sin(PO) * cos(theta) +
cos(PO) * sint(theta) * cos(By)]

Target Longitude =
arctan2[sin(theta) * sin(By),

cos(PO) * cos(theta) -
sin(PO) * sin(theta) * cos(By)] + UO

R = Range to target from input Lat/Lon(yds)
By = Bearing to target from input Lat/Lon
PO •= input Latitude
UO ■= input Longitude
RE «= Radius of the earth (from FTCONDAT)

Notes:
All angles(input/output) in floating point Radians,
and all ranges in floating point yards.

Exceptions Raised:

TYPE RBLLTHET_item_type IS
RECORD
OVER : FLOAT ;

—interim value (R/REO
END RECORD;

TYPE RBLLTHET_item_pointer IS ACCESS RBLLTHET_item_type ;
TYPE RBLLTHET_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE RBLLTHET_one_pointer IS ACCESS RBLLTHET_one_type ;
FUNCTION RBLLTHET_item_address_access IS
NEW UNCHECKED_CONVERSION(SOORCE=>ADDRESS,TARGET=>RBLLTHET_item_pointer

RBLLTHET : RBLLTHET_itemj?ointer :=RBLLTHET_item_address access (
RBLLTHET_memory•ADDRESS) ;

FUNCTION RBLLTHET_one_address_access IS
NEW UNCHECKED_CONVERSION(SODRCE=>ADDRESS,TARGET=>RBLLTHET_one_pointer)

RBLLTHET_one : RBLLTHET_onejpointer:-=RBLLTHET_one address access!
RBLLTHET_memory'ADDRESS) ; _

TYPE TEMPARG_item_type IS
RECORD
OVER : FLOAT ;

—interim value for arcsin
END RECORD;

TYPE TEMPARG_item_pointer IS ACCESS TEMPARG_item_type ;
TYPE TEMPARG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE TEHPARG_one_pointer IS ACCESS TEMPARG_one_type ;
FUNCTION TEMPARG_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>TEMPARG_item_pointer)

TEMPARG : TEMPARG_item_pointer:=TEMPARG_item_address access (
TEKPARG_tnemory'ADDRESS) ;

FUNCTION TEMPARG_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>TEMPARG_one_pointer)

TEMPARG_one : TEMPARG_one_pointer:=TEMPARG_one_address access(
TEMPARGjnemory'ADDRESS) ;

TYPE COSTHET_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE COSTHET_item_pointer IS ACCESS COSTHET_item_type ;
TYPE COSTHET_one_type IS ARRAY (0..0) OF cms2 word ;

M-34

TYPE COSTHET_one_pointer IS ACCESS COSTHET_one_type ;
FUNCTION COSTHET_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>COSTHET_itemjpointer)

COSTHET : COSTHET_item_j?ointer:=COSTHET_itein_address_access (
COSTHET_memory*ADDRESS) ;

FUNCTION COSTHET_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>COSTHET_onej?ointer)

t

COSTHET_one : COSTHET_one_pointer:=COSTHET_one_address_access(
COSTHETjnemory' ADDRESS) ;

TYPE SINTHET_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINTHET_item_pointer IS ACCESS SINTHET_item_type ;
TYPE SINTHET_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SINTHET_one_pointer IS ACCESS SINTHET_one_type ;
FUNCTION SINTHET_item_address_access IS
NEW ÜNCHECKED_CONVERSION (SOüRCE=>ADDRESS, TARGET=>SINTHET_item_pointer)

t

SINTHET : SINTHET_item_pointer:=SINTHET_item_address_access(
SINTHET_memory'ADDRESS) ;

FUNCTION SlNTHET_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>SINTHET_one_pointer)

SINTHET_one : SINTHET_one_pointer:=SINTHET_one_address_access(
SINTHETjaemory'ADDRESS) ;

TYPE COSLATl_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE COSLATl_item_pointer IS ACCESS COSLATl_item_type ;
TYPE COSLATl_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE COSLATl_onejpointer IS ACCESS COSLATl_one_type ;
FUNCTION COSLATl_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>COSLATl_item_pointer)

COSLAT1 : COSLATl_item_pointer:=COSLATl_item_address_access (
COSLATl_memory'ADDRESS) ;

FUNCTION COSLATl_one_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>COSLATl_one_pointer)

COSLATl_one : COSLATl_one_pointer :=COSLATl_one_address_access (
COSLATl_memory'ADDRESS) ;

TYPE SINLATl_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINLATl_item__pointer IS ACCESS SINLATl_item_type ;
TYPE SINLATl_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SINLATl_onejpointer IS ACCESS SINLATl_one_type ;
FUNCTION SINLATl_item_address_access IS
NEW UNCHECKED_CONVERSION (SOORCE=>ADDRESS, TARGET=>SINLATl_item_pointer)

SINLAT1 : SINLATl_item_pointer:=SINLATl_item_address_access(
SINLATl_memory'ADDRESS) ;

FUNCTION SINLATl_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>SINLATl_one_pointer)

SINLATl_one : SINLATl_one_pointer:=SINLATl_one_address_access(
SINLATl_memory'ADDRESS) ;

TYPE COSBRG_item_type IS
RECORD
OVER : FLOAT ;

END RECORD ;

TYPE COSBRG_itemjpointer IS ACCESS COSBRG_item_type ;
TYPE COSBRG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE COSBRG_one_pointer IS ACCESS COSBRG_one_type ;
FUNCTION COSBRG_item_address_access IS
NEW UNCHECKED_CONVERSION (SOURCE=>ADDRESS, TARGET=>COSBRG_item_pointer)

M-35

COSBRG : COSBRG_item_pointer:=COSBRG item address access(COSBRG memory"
ADDRESS) ; - _ _ jr

FUNCTION COSBRG_one_address_access IS
NEW ÜNCHECKED_CONVERSION(SOURCE=>ADDRESS,TARGET=>COSBRG_one_pointer) ;

COSBRG_one : COSBRG_one_pointer:=COSBRG one address access(
COSBRG_memory'ADDRESS) ;

TYPE SINBRG_item_type IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINBRG_item_pointer IS ACCESS SINBRG_item_type ;
TYPE SINBRG_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE SINBRG_one_pointer IS ACCESS SINBRG_one type ;
FUNCTION SINBRG_item_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS, TARGET=>SINBRG_item_pointer)

SINBRG : SINBRG_item_pointer:=SINBRG item address access(SINBRG memory'
ADDRESS) ; _ _ _ _

FUNCTION SINBRG_one_address_access IS
NEW UNCHECKED_CONVERSION(SOURCE=>ADDRESS, TARGET=>SINBRG_one_pointer) ;

SINBRG_one : SINBRG_one_pointer:=SINBRG_one address access(
SINBRGjnemory'ADDRESS) ;

BEGIN
SUDVRNG.ALL.OVER := SODPRBLL_SUDVRNG
SUDVBRG.ALL.OVER := SODPRBLL SUDVBRG
SUDVLAT1.ALL.OVER
SODVLON1.ALL.OVER
RBLLTHET.ALL.OVER

= SUDPRBLL_SUDVLAT1 ;
= SODPRBLL_SUDVLONl ;
= SUDVRNG.ALL.OVER/FLOAT(FTCONDAT.ALL(0).FVEQRADG)

COSTHET.ALL.OVER
SINTHET.ALL.OVER
COSLAT1.ALL.OVER
SINLAT1.ALL.OVER

COS(RBLLTHET.ALL.OVER)
SIN(RBLLTHET.ALL.OVER)

:= COS(SUDVLAT1.ALL.OVER)
SIN(SUDVLAT1.ALL.OVER)

COSBRG.ALL.OVER := COS(SUDVBRG.ALL.OVER) ;
SINBRG.ALL.OVER := SIN(SUDVBRG.ALL.OVER) ;
TEMPARG.ALL.OVER := SINLAT1.ALL.OVER*COSTHET.ALL.OVER+COSLAT1.ALL.

OVER'SINTHET.ALL.OVER*COSBRG.ALL.OVER ;
SUDVLAT2.ALL.OVER := ASIN(TEMPARG.ALL.OVER) ;
SUDVLON2. ALL. OVER :■= SUDPATAN (SINTHET.ALL.OVER*SINBRG. ALL.OVER,

COSLAT1. ALL. OVER*COSTHET. ALL . OVER-SINLAT1. ALL. OVER*SINTHET. ALL.OVER
♦COSBRG.ALL.OVER)+SUDVLON1.ALL.OVER ;

IF SUDVLON2.ALL.OVER> FKPI THEN
SÜDVLON2.ALL.OVER := SUDVLON2.ALL.OVER-FKPI2 ;

END IF;
SUDPRBLL_SUDVLAT2 := SUDVLAT2.ALL.OVER ;
SUDPRBLL_SUDVLON2 := SUDVLON2.ALL.OVER ;

END SUDPRBLL ;
END SYSP ;

END KK2 ;

M-36

CCCC TRANSLATOR COMMON PACKAGE

CMS2 TO ADA PREDEFINED PACAKGE

with System;
use System;

with Unchecked_Conversion;
package Cms2_To_Ada_Predefined is

Word : constant 4; — storage unit is byte, 4 bytes per word

subtype Unsigned_Longword is Integer;

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

Unsignedl
Unsigned2
Unsigned3
Unsigned4
Unsigned5
Unsigned6
Unsigned7
Unsigned8
Unsigned9
OnsignedlO
Unsignedll
Unsignedl2
Unsignedl3
Unsignedl4
Unsignedl5
Onsignedl6
Unsignedl7
Ünsignedl8
Unsignedl9
Unsigned20
Onsigned21
Unsigned22
Unsigned23
ünsigned24
Unsigned25
Unsigned26
Unsigned27
Ünsigned28
Onsigned29
Unsigned30
Unsigned31
Unsigned32
Unsigned63
Unsigned64

xs

is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .
is Unsigned_Longword range 0 .

Unsigned_Longword range 0 .
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is ünsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Onsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Onsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is ünsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Unsigned_Longword range 0
is Onsigned_Longword range 0
is Unsigned_Longword range 0

Signedl
Signed2
Signed3
Signed4
Signed5
Signed6
Signed7
Signed8
Signed9
SignedlO is
Signedl1 is
Signedl2 is
Signedl3 is
Signedl4 is
Signedl5 is
Signedl6 is
Signedl7 is

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

-2**0 .
-2**1 .
-2**2 .
-2**3 .
-2**4 .
-2**5 .
-2**6 .
-2**7 .
-2**8 .
-2**9 .
-2**10
-2**11
-2**12
-2**13
-2**14
-2**15
-2**16

2**1 -
2**2 -
2**3 -
2**4 -
2**5 -
2**6 -
2**7 -
2**8 -
2**9 -

. 2**10

. 2**11

. 2**12

. 2**13

. 2**14

. 2**15

. 2**16

. 2**17

. 2**18

. 2**19

. 2**20

. 2**21

. 2**22

. 2**23

. 2**24

. 2**25

. 2**26

. 2**27

. 2**28

. 2**29

. 2**30

. 2**30

. 2**30

. 2**30

. 2**30

2**1
2**1
2**2
2**3
2**4
2**5
2**6
2**7
2**8
2**9 - 1

. 2**10 -

. 2**11 -

. 2**12 -

. 2**13 -

. 2**14 -

. 2**15 -

. 2**16 -

1
1
1
1
1
1
1
1
1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

I
■ I

■ I

■ I
I
I

■ I
■ I
■ I

■ I

■ I
• I
■ I

■ I
■ I
■ I

■ I

1—+
2—+
3~+
4~+
5—+
6—+
7—+
—+

9—+
— I-+
— I—+
— I—+
— I--+
— I—+
— I—+
— I--+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I--+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+
— I—+

U
Ü
O
Ü
Ü
Ü
Ü
Ü
Ü

10 Ü $
11 Ü $
12 Ü
13 U
14 Ü
15 Ü
16 U
17 U
18 U
19 U
20 Ü
21 U
22 Ü
23 Ü
24 U
25 Ü
26 U
27 U
28 U
29 Ü
30 O
31 Ü
32 Ü
64 U
64 O

M-37

subt ype Signedl8 is Integer range -2**17 . . 2**17 - 1 ; — I 18 S $
subt ype Signedl9 is Integer range -2**18 .. 2**18 - 1 ; — I 19 S $
subt ype Signed20 is Integer range -2**19 .. 2**19 - 1 • — I 20 S $
subtype Signed21 is Integer range -2**20 . . 2**20 - 1 ■ — I 21 S $
subtype Signed22 is Integer range -2**21 .. 2**21 - 1 • — I 22 S $
subtype Signed23 is Integer range -2**22 .. 2**22 - 1 • — I 23 S S
subt ype Signed24 is Integer range -2**23 . . 2**23 - 1 • — I 24 S $
subtype Signed25 is Integer range -2**24 .. 2**24 - 1 — I 25 S $
subt ype Signed26 is Integer range -2**25 .. 2**25 - 1 — I 26 S $
subt ype Signed27 is Integer range -2**26 .. 2**26 - 1 — I 27 S $
subt ype Signed28 is Integer range -2**27 . . 2**27 - 1 — I 28 S $
subt ype Signed29 is Integer range ■ -2**28 .. 2**28 - 1 — I 29 S S
subt ype Signed30 is Integer range ■ -2**29 .. 2**29 - 1 — I 30 S $
subtype Signed31 is Integer range ■ -2**30 .. 2**30 - 1, — I 31 S $
subt ype Sxgned32 is Integer; — range -2**31..2**31-1, — I 32 S S
subt ype Signed33 is Integer; — range -2**32..2**32-1, — I 33 S $
subtype Signed37 is Integer; — range -2* ♦36..2**36-1, — I 37 S S
subt ype Signed40 is Integer; — range -2**39. .2**39-1, — I 40 S $
subtype Signed48 is Integer; — range -2**47. .2**47-1, — I 48 S $
subtype Signed56 is Integer; — range -2**55. .2**55-1, — I 56 S $
subtype Signed64 is Integer; — range -2* *63..2**63-1; — I 64 S $

— Fixed point types
type Fixed2s2 is delta 2.0**(-2) range -2.0**1 .. 2 .0**1 - 2.0**(- 2);
type Fixed3s0 is delta 2.0**(-0) range -2.0**2 .. 2 .0**7 - 2.0**(- 0);
type Fixed3s5 is delta 2.0**(-5) range -2.0**2 .. 2 .0**7 - 2.0**(- 5);
type Fixed6s3 is delta 2.0**(-3) range -2.0**5 .. 2 .0**5 - 2.0**(- 3);
type Fixed7s4 is delta 2.0**(-4) range -2.0**6 .. 2 .0**6 - 2.0**(- 4) ;
type Fixed8s0 is delta 2.0**(-0) range -2.0**7 .. 2 .0**7 - 2.0**(- 0) ;
type Fixed8s3 is delta 2.0**(-3) range -2.0**7 .. 2 .0**7 - 2.0**(- 3) ;
type Fixed8s8 is delta 2.0**(-8) range -2.0**7 .. 2 .0**7 -~2.0**(- 8);
type Fixed9s0 is delta 2.0**(-0) range -2.0**8 .. 2 .0**8 - 2.0**(- 0);
type Fixed9s3 is delta 2.0**(-3) range -2.0**8 .. 2 .0**8 - 2.0**(- 3);
type Fixedl0s5 is delta 2.0**(-5) range -2.0**9 .. 2 .0**9 - 2.0**(- 5) ;
type FixedllsO is delta 2.0**(-0) range -2.0**10 .. 2.0**10 - 2.0** (-0);
type Fixedl2sl2 is delta 2.0**(-12) range -2.0**(-l) . . 2.0**(-l) - 2 .0**(-12)
type Fixedl3sl2 is delta 2.0** (-12) range -2.0**0 .. 2 .0**0 - 2.0**(- 12);
type Fixedl4sl3 is delta 2.0**(-13) range -2.0**0 .. 2 .0**0 - 2.0** (- 13);
type Fixedl5s3 is delta 2.0**(-3) range -2.0**11 .. 2.0**11 - 2.0** (-3);
type Fixedl5s5 is delta 2.0**(-5) range -2.0**9 .. 2 .0**9 - 2.0**(- 5);

type Fixedl6s0 is delta 2.0**(-0) range -2.0**15 .. 2.0**15 - 2.0** (-0);
type Fixedl6sl is delta 2.0**(-1) range -2.0**14 .. 2.0**14 - 2.0** (-1)
type Fixedl6s2 is delta 2.0**(-2) range -2.0**13 .. 2.0**13 - 2.0** (-2)
type Fixedl6s3 is delta 2.0**(-3) range -2.0**12 .. 2.0**12 - 2.0** (-3)
type Fixedl6s4 is delta 2.0**(-4) range -2.0**11 .. 2.0**11 - 2.0** (-4)
type Fixedl6s5 is delta 2.0**(-5) range -2.0**10 .. 2.0**10 - 2.0** (-5)
type Fixedl6s6 is delta 2.0**(-6) range -2.0**9 .. 2.0**9 - 2.0** (-6);
type Fixedl6s7 is delta 2.0**(-7) range -2.0**8 .. 2.0**8 - 2.0** (-7);
type Fixedl6s8 is delta 2.0** (-8) range -2.0**7 .. 2.0**7 - 2.0**(-8);
type Fixedl6s9 is delta 2.0**(-9) range -2.0**6 .. 2.0**6 - 2.0**(-9);
type Fixedl6sl0 is delta 2.0**(-10) range -2.0**5 .. 2.0**5 - 2.0** (-10);
type Fixedl6sll is delta 2.0**(-11) range -2.0**4 .. 2.0**4 - 2.0** (-11)
type Fixedl6sl2 is delta 2.0**(-12) range -2.0**3 .. 2.0**3 - 2.0**(-12)
type Fixedl6sl3 is delta 2.0**(-13) range -2.0**2 .. 2.0**2 - 2.0**(-13)
type Fixedl6sl4 is delta 2.0**(-14) range -2.0**1 .. 2.0**1 - 2.0** (-14)
type Fixedl6sl5 is delta 2.0**(-15) range -2.0**0 .. 2.0**0 - 2.0**(-15)

type Fixedl7s50 is delta 2.0**(-50) range -2.0**(-34) .. 2.0**(-34) - 2.0**(-5
type Fixedl9s6 is delta 2.0**(-6) range -2.0**12 .. 2.0**12 - 2.0** (-6);
type Fixed24s8 is delta 2.0**(-8) range -2.0**15 .. 2.0**15 - 2.0** (-8)
type Fixed24s9 is delta 2.0**(-9) range -2.0**14 .. 2.0**14 - 2.0** (-9)
type Fixed30s3 is delta 2.0**(-3) range -2.0**26 .. 2.0**26 - 2.0** (-3)

ype Fixed32s0 LS delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0** (-0)
type Fixed32sl is delta 2.0**(-1) range -2.0**30 .. 2.0**30 - 2.0** (-1)
type Fixed32s2 is delta 2.0**(-2) range -2.0**29 .. 2.0**29 - 2.0** (-2)
type Fixed32s3 is delta 2.0**(-3) range -2.0**28 .. 2.0**28 - 2.0** (-3)
type Fixed32s4 is delta 2.0**(-4) range -2.0**27 .. 2.0**27 - 2.0** (-4)
type Fixed32s5 is delta 2.0**(-5) range -2.0**26 .. 2.0**26 - 2.0** (-5)
type Fixed32s6 is delta 2.0**(-6) range -2.0**25 .. 2.0**25 - 2.0** (-6),
type Fixed32s7 is delta 2.0**(-7) range -2.0**24 .. 2.0**24 - 2.0** (-7),
type Fixed32s8 is delta 2.0**(-8) range -2.0**23 .. 2.0**23 - 2.0** (-8),
type Fixed32s9 is delta 2.0**(-9) range -2.0**22 .. 2.0**22 - 2.0** (-9).
type Fixed32sl0 is delta 2.0**(-10) range -2.0**21 .. 2.0**21 - 2.0** (-10);
type Fixed32sll is delta 2.0**(-ll) range -2.0**20 .. 2.0**20 - 2.0** (-11) ;

M-38

type Fixed32sl2 is delta 2.0** (-12) range -2.0**19 .. 2.0**19 - - 2.0** (-12);
type Fixed32sl3 is delta 2.0** (-13 range -2.0**18 .. 2.0**18 - - 2.0** (-13);
type Fixed32sl4 is delta 2.0** -14 range -2.0**17 .. 2.0**17 - - 2.0** (-14);
type Fixed32sl5 is delta 2.0** -15 range -2.0**16 . . 2.0**16 - - 2.0** (-15);
type Fixed32sl6 is delta 2.0** -16 range -2.0**15 .. 2.0**15 - - 2.0** (-16);
type Fixed32sl7 is delta 2.0** -17 range -2.0**14 .. 2.0**14 - - 2.0** (-17);
type Fixed32sl8 is delta 2.0** -18 range -2.0**13 .. 2.0**13 - - 2.0** (-18);
type Fixed32sl9 is delta 2.0** -19 range -2.0**12 .. 2.0**12 - - 2.0** (-19);
type Fixed32s20 is delta 2.0** -20 range -2.0**11 .. 2.0**11 - - 2.0** (-20);
type Fixed32s21 is delta 2.0** -21 range -2.0**10 .. 2.0**10 - - 2.0** (-21);
type Fixed32s22 is delta 2.0** -22 range -2.0**9 .. 2.0**9 - 2.0**(-22);
type Fixed32s23 is delta 2.0** -23 range -2.0**8 .. 2.0**8 - 2.0**(-23);
type Fixed32s24 is delta 2.0** -24 range -2.0**7 .. 2.0**7 - 2.0**(-24);
type Fixed32s25 is delta 2.0** -25 range -2.0**6 .. 2.0**6 - 2.0**(-25) ;
type Fixed32s26 is delta 2.0** -26 range -2.0**5 .. 2.0**5 - 2.0**(-26) ;
type Fixed32s27 is delta 2.0** -27 range -2.0**4 .. 2.0**4 - 2.0**(-27);
type Fixed32s28 is delta 2.0** -28 range -2.0**3 .. 2.0**3 - 2.0**(-28);
type Fixed32s29 is delta 2.0** -29 range -2.0**2 .. 2.0**2 - 2.0**(-29);
type Fixed32s30 is delta 2.0** -30 range -2.0**1 .. 2.0**1 - 2.0**(-30);
type Fixed32s31 is delta 2.0** -31 range -2.0**0 .. 2.0**0 - 2.0**(-31);

type Fixed32s32 is delta 2.0** -32 range -2.0**(-l) . 2.0** -1) - 2.0**(-32);
type Fixed32s33 is delta 2.0** -33 range -2.0**(-2) . 2.0** -2) - 2.0**(-33);
type Fixed32s34 is delta 2.0** -34 range -2.0**(-3) . 2.0** -3) - 2.0**(-34);
type Fixed32s35 is delta 2.0** -35 range -2.0**(-4) . 2.0** -4) - 2.0**(-35) ;
type Fixed32s36 is delta 2.0** -36 range -2.0**(-5) . 2.0** -5) - 2.0**(-36);
type Fixed32s37 is delta 2.0** -37 range -2.0**(-6) . 2.0** -6) - 2.0**(-37);
type Fixed32s38 is delta 2.0** -38 range -2.0**(-7) . 2.0** -7) - 2.0**(-38);
type Fixed32s39 is delta 2.0** -39 range -2.0**(-8) . 2.0** -8) - 2.0**(-39) ;
type Fixed32s40 is delta 2.0** -40 range -2.0**(-9) . 2.0** -9) - 2.0**(-40);
type Fixed32s41 is delta 2.0** -41 range _2.o**(-10) . 2.0** -10) - 2.0** (-41)
type Fixed32s42 is delta 2.0** -42 range -2.0**(-ll) . 2.0** -11) - 2.0** (-42)
type Fixed32s43 is delta 2.0** -43 range -2.0**(-12) . 2.0** -12) - 2.0** (-43)
type Fixed32s44 is delta 2.0** -44 range -2.0**(-13) . 2.0** -13) - 2.0** (-44)
type Fixed32s45 is delta 2.0** -45 range -2.0**(-14) . 2.0** -14) - 2.0** (-45)
type Fixed32s46 is delta 2.0** -46 range -2.0**(-15) . 2.0** -15) - 2.0** (-46)
type Fixed32s47 is delta 2.0** -47 range -2.0**(-16) . 2.0** -16) - 2.0** (-47)
type Fixed32s48 is delta 2.0** -48 range -2.0**(-17) . 2.0** -17) - 2.0** (-48)
type Fixed32s49 is delta 2.0** -49 range -2.0**(-18) . 2.0** -18) - 2.0** (-49)
type Fixed32s50 is delta 2.0** -50 range -2.0**(-19) . 2.0** -19) - 2.0** (-50)
type Fixed32s51 is delta 2.0** -15 range -2.0**(-20) . 2.0** -20) - 2.0** (-51)
type Fixed32s52 is delta 2.0** -52 range -2.0**(-21) . 2.0** -21) - 2.0** (-52)
type Fixed32s53 is delta 2.0** -53 range -2.0**(-22) . 2.0** -22) - 2.0** (-53)
type Fixed32s54 is delta 2.0** -54 range -2.0**(-23) . 2.0** -23) - 2.0** (-54)
type Fixed32s55 is delta 2.0** -55 range -2.0**(-24) . 2.0** -24) - 2.0** (-55)
type Fixed32s56 is delta 2.0** -56 range -2.0**(-25) . 2.0** -25) - 2.0** (-56)
type Fixed32s57 is delta 2.0** -57 range -2.0**(-26) . 2.0** -26) - 2.0** (-57)
type Fixed32s58 is delta 2.0** -58 range -2.0**(-27) . 2.0** -27) - 2.0** (-58)
type Fixed32s59 is delta 2.0** -59 range -2.0**(-28) . 2.0** -28) - 2.0** (-59)
type Fixed32s60 is delta 2.0** -60 range -2.0**(-29) . 2.0** -29) - 2.0** (-60)
type Fixed32s61 is delta 2.0** -61 range -2.0**(-30) . 2.0** -30) - 2.0** (-61)
type Fixed32s62 is delta 2.0** -62 range -2.0**(-31) . 2.0** -31) - 2.0** (-62)
type fixed32s63 is delta 2.0** -63 range -2.0**(-32) . 2.0** -32) - 2.0** (-63)
type Fixed32sl27 is delta 2.0** (-6: 2) range -2.0**(-31) .. 2.0** (-31) - 2.0**(-62

type Fixed33s3 is delta 2.0** -3) range -2.0**(-l) . 2.0**(- •1) - 2 .0**(- 3);
type Fixed34s2 is delta 2.0** -2) range -2.0**(-l) . 2.0**(- -1) - 2 .0**(- 2);
type Fixed34s32 is delta 2.0** -0) range -2.0**31 .. ; 2.0**31 - - 2.0** (-0);
type Fixed36s3 is delta 2.0** -3) range -2.0**(-l) . 2.0**(- ■1) - 2 .0**(- 3);
type Fixed37s0 is delta 2.0** -0) range -2.0**31 .. ; >.0**31 - - 2.0** (-0);
type Fixed37s4 is delta 2.0** -4) range -2.0**27 .. ; 2.0**27 - - 2.0** (-4);
type Fixed37s8 is delta 2.0** -8) range -2.0**23 .. : 2.0**23 - - 2.0** (-8);
type Fixed37sl0 is delta 2.0** -10 range -2.0**21 .. ; 2.0**21 - - 2.0** (-10);
type Fixed40s8 is delta 2.0** -8) range -2.0**(-l) . 2.0**(- ■1) - 2 .0**(- 8);
type Fixed44sl2 is delta 2.0** -0) range -2.0**31 .. : 2.0**31 - - 2.0** (-0);
type Fixed48s32 is delta 2.0** -0) range -2.0**31 .. ; 2.0**31 - - 2.0** (-0);
type Fixed49s50 is delta 2.0** -0) range -2.0**31 .. ; 2.0**31 - - 2.0** (-0) ;

type Fixed64s0 is delta 2.0*'' (-0 range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed64sl is delta 2.0** (-1 range -2.0**30 .. 2.0**30 - 2.0**(-l);
type Fixed64s2 is delta 2.0*" (-2 range -2.0**29 .. 2.0**29 - 2.0**(-2);
type Fixed64s3 is delta 2.0** '(-3 range -2.0**28 .. 2.0**28 - 2.0**(-3);
type Fixed64s4 is delta 2.0** r(_4 range -2.0**27 .. 2.0**27 - 2.0**(-4);
type Fixed64s5 is delta 2.0** '(-5 range -2.0**26 .. 2.0**26 - 2.0**(-5);
type Fixed64s6 is delta 2.0** '(-6 range -2.0**25 .. 2.0**25 - 2.0**(-6);
type Fixed64s7 is delta 2.0** M-7 range -2.0**24 .. 2.0**24 - 2.0**(-7);

M-39

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

Fixed64s8
Fixed64s9
Fixed64sl0
Fixed64sll
Fixed64sl2
Fixed64sl3
Fixed64sl4
Fixed64sl5
Fixed64sl6
Fixed64s24
Fixed64s30
Fixed64s32
Fixed64s33
Fixed64s45
Fixed64sl27
Fixed96sl27

is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta

2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(
2.0**(

-8)
-9)
-10)
-11)
-12)
-13)
-14)
-15)
-16)
-0)
-0)
-0)
-0)
-0)
-0)
-0)

type Fixed2ul
type Fixed9u0
type Fixed9u3

Fixedllu4
FixedllulO is delta

type Fixedl2ul0 is delta
type Fixedl5ul2 is delta

is delta 2.0**(-l)
is delta 2.0**(-0)

type
type

is delta
is delta

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

Fixedl6uO
Fixedl6ul
Fixedl6u2
Fixedl6u3
Fixedl6u4
Fixedl6u5
Fixedl6u6
Fixedl6u7
Fixedl6u8
Fixedl6u9
Fixedl6ulO
Fixedl6ull
Fixedl6ul2
Fixedl6ul3
Fixedl6ul4
Fixedl6ul5
Fixedl6ul6

is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta
is delta

0**(-3)
0**(-4)
0**(-10)
0**(-10)
0**(-12)

0**(-0)
0**(-l)
-0**(-2)
0**(-3)
0**(-4)
0**(-S)
0**(-6)
0**(-7)
0**(-8)
0**(-9)
0**(-10)
0**(-ll)
0**(-12)
0**(-13)
0**(-14)
0**(-15)
0**(-16)

type Fixedl7u3 is delta 2.0**(-3)
type Fixed21ull is delta 2.0**(-11)
type Fixed23ul0 is delta 2.0**(-10)

is delta 2.0**(-8)
is delta 2.0**(-10)

type Fixed32u28 is delta 2.0**(-28)
type Fixed32u29 is delta 2.0**(-29)
type Fixed32u31 is delta 2.0**(-31)

type Fixed25u8
type Fixed30ul0

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

-2.0**23
-2.0**22
-2.0**21
-2.0**20
-2.0**19
-2.0**18
-2.0**17
-2.0**16
-2.0**15
-2.0**31
-2.0**31
-2.0**31
-2.0**31
-2.0**31
-2.0**31
-2.0**31

2.0**23
2.0**22
2.0**21
2.0**20
2.0**19
2.0**18
2.0**17
2.0**16
2.0**15
2.0**31
2.0**31
2.0**31
2.0**31
2.0**31
2.0**31
2.0**31

2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-
2.0**(-

-8);
■9);
10),
11),
12);
13);
14);
15),
16),
0);

■0),
0)
0),
0),
0),
0),

range 0.0
range 0.0
range 0.0
range
range
range 0.0
range 0.0

0.0
0.0

range
range
range
range
range
range
range
range
range
range
range
range 0.0
range 0.0
range 0.0
range 0.0
range 0.0
range 0.0

range
range
range
range
range
range
range
range

type Fixed33u32 is delta 2.0**(-31) range 0.0
— end fixed point types

subtype Cir,s2_Word is Integer;

— common variables

First Iter: Boolean;

2.0**0
2.0**8
2.0**5
2.0**6
2.0**0
2.0**1
2.0**2

- 2.0**(-l);
- 2.0**(-0);
- 2.0**(-3);
- 2.0**(-4);
- 2.0**(-10)
- 2.0**(-10)
- 2.0**(-12)

.0**15

.0**14

.0**13

.0**12

.0**11

.0**10

.0**9

.0**8
2.0**7 •
2.0**6 ■
.0**5 ■
.0**4 •
.0**3 •
.0**2 •
.0**1 •

2.0**0 ■
2.0**(1)

• 2.0**(-0);
■ 2.0**(-l),
■ 2.0**(-2),
■ 2.0**(-3)
■ 2.0**(-4)j
• 2.0**(-5);
2.0**(-6);
2.0**(-7);
2.0**(-8);
2.0**(-9);
2.0**(-10)
2.0**(-ll);
2.0**(-12);
2.0**(-13),
2.0**(-14) j
2.0**(-15);
- 2.0**(-16),

2.0**13 - 2.0**
2.0**9 - 2.0**(
2.0**12 - 2.0**

0**16 - 2.0**
0**19 - 2.0**
0**3 - 2.0**(

0**(
0**(

(-3);
-11);
(-10)
(-8);
(-10)
-28)
-29)
-31)

2.0**0 - 2.0**(-31)

Sxl Integer : = 1
Sx2 Integer : = 2
Sx3 Integer : = 3
Sx4 Integer : = 4
Sx5 Integer : = 5
Sx6 Integer : = 6
Sx7 Integer : = 7
Sx8 Integer : = 8

funct3 .on "+"
(Left : in Float;
Right : in Integer)

return Float;
functa on " + "

M-40

in
in

: xn
: in

in
in

in
in

in
in

in
in

(Left : in
Right : in
return Float;

function "+"
(Left : in
Right : in
return Integer;

function "+"
(Left : in
Right : in
return Integer;

function "-"
(Left
Right

return Float;
function "-"

(Left
Right
return Float;

function ,,-n

(Left
Right
return Integer;

function "-"
(Left
Right
return Integer;

function "*"
(Left
Right
return Float,

function "*"
(Left
Right
return Float;

function "*"
(Left
Right

return Integer;
function "*"

(Left : in
Right : in
return Integer;

function "/"
(Left : in
Right : in
return Float;

function "/"
(Left : in
Right : in

return Float;
function "<"

(Left
Right
return Boolean,

function "<"
(Left
Right
return Boolean;

function "<="
(Left : in
Right : in
return Boolean;

function "<="
(Left
Right
return Boolean;

function ">"
(Left
Right
return Boolean;

function ">"
(Left
Right
return Boolean;

function ">="

: in
: in

: m
: in

in
in

in
in

in
in

in
in

Integer;
Float)

Boolean;
Integer)

Integer;
Boolean)

Float;
Integer)

Integer;
Float)

Boolean;
Integer)

Integer;
Boolean)

Float;
Integer)

Integer;
Float)

Boolean;
Integer)

Integer;
Boolean)

Float;
Integer)

Integer;
Float)

Float;
Integer)

Integer;
Float)

Float;
Integer)

Integer;
Float)

Float;
Integer)

Integer;
Float)

M-41

(Left : in
Right : in

return Boolean;
function ">="

(Left : in
Right : in

return Boolean;
function "and"

(Left : in
Right : in
return Boolean;

function "and"
(Left : in
Right : in
return Boolean;

function "or"
(Left : in
Right : in

return Boolean;
function "or"

(Left : in
Right : in
return Boolean-

Float;
Integer)

Integer;
Float)

Integer;
Boolean)

Boolean;
Integer)

Integer;
Boolean)

Boolean;
Integer)

function Pad
(Str : in String;
Num : in Integer)
return String;

— function asin2(a: float; b: float) return float; /* MLEE: 09-11-94 */
— function acos2(a: float; b: float) return float; /* MLEE: 09-11-94 */

— fixed point arithmetic functions
function isqrt(a: float) return float; /* MLEE: 09- -11 -q4 */
function hin (a: float) return float; /* MLEE: 09- -11- -94 */
function In (a: float) return float; /* MLEE: 09- -11- -Q4 */
function lexp (a: float) return float; /* MLEE: 09- -11- -94 */
function ism (a: float) return float; /* MLEE: 09- -n- -94 */
function 1COS (a: float) return float; /* MLEE: 09- -11- -94 */
function bams (a: float) return float; /* MLEE: 09- -n- -94 */
function rad (a: float) return float; /* MLEE: 09- li- -94 */

function sin(r: float) return float;
function cos(r: float) return float;
function tan(r: float) return float;
function log(r: float) return float;

pragma interface(fortran, sin);
pragma interface(fortran, cos);
pragma interface(fortran, tan);
pragma interface(fortran, log);

function Long_Flt_Image
(R : in Long_Float)
return String;

type Bit_String is array (Natural range <>) of Boolean;
pragma Pack (Bit_String);

subtype Bit_String_32 is Bit_String (0
subtype String4 is String (1 .. 4);

function Space
(N : in Integer)
return String;

— Conversion functions

function Bit_To_Integer
(Bs : in Bit_String)
return Integer;

function Integer_To_Bit
(K : in Integer;
Nb : in Integer)
return Bit_String;

31);

M-42

—function char_to_bit(c: in string) return bit_string;
function Int_To_Bool

(N : in Integer)
return Boolean;

—function int_to_bool(n: in unsigned_longword) return boolean;
function Int_To_Bool

(N : in Float)
return Boolean;

function Bool_To_Int
(PI : in Boolean)
return Integer;

function Str_To_Int
(PI : in String)
return Integer;

function Int_To_Str
(PI : in Integer)
return String;

procedure Field_H_Proc_Integer
(Value : in Integer;
Bstart : in Integer;
Blength : in Integer;
Dest_Word : in out Cms2_Word);

procedure Field_H_Proc_Float
(Value : in Float;
Bstart : in Integer;
Blength : in Integer;
Dest_Word : in out Cms2_Word);

procedure Field_H_Proc_String
(Value : in String;
Bstart : in Integer;
Clength : in Integer;
Dest_Word : in out Cms2_Word);

function Field_H_Fcn_Integer
(Source_Word : in Cms2_Word;
Bstart : in Integer;
Blength : in Integer)
return Integer;

function Field_H_Fcn_Float
(Source_Word : in Cms2_Word;
Bstart : in Integer;
Blength : in Integer)
return Float;

function Field_H_Fcn_String
(Source_Word : in Cms2_Word;
Bstart : in Integer;
Clength : in Integer)
return String;

procedure Meu_Table_Word_Proc
(Value : in Integer;
Size_Diml : in Integer;
Size_Dim2 : in Integer;
Array_Addr : in Address);

procedure Meu_Table_Word_Proc
(Value : in Float;
Size_Diml : in Integer;
Size_Dim2 : in Integer;
Array_Addr : in Address);

procedure Meu_Table_Word_Proc
(Value : in String;
Size_Diml : in Integer;
Size_Dim2 : in Integer;
Array_Addr : in Address);

procedure Mdu_Item_Word_Proc
(Value : in Integer;
Size_Diml : in Integer;
Array_Addr : in Address);

procedure Mdu_Item_Word_Proc
(Value : in Float;
Size Diml : in Integer;

M-43

Array_Addr : in Address) ;

procedure Mdu_Item_Word_Proc
(Value : in String;
Size_Diml : in Integer;
Array_Addr : in Address);

procedure Cms2_Input
(File : in String;
Format : in String;
Item_Num : in Integer;
Item : out Integer);

ure Cms2 Input
(File : in String;
Format : in String;
Item Num : in Integer;
Item : out Float);

procedure Cms2_Input
(File : in String;
Format : in String;
Item_Num : in Integer;
Item : out String);

procedure Cms2_Output
(File : in String;
Format : in String;
Item Num : in Integer := 1;
Item : in Integer := 0)

procedure Cms2 Output
(File : in String;
Format : in String;
Item Num : in Integer;
Item : in Float);

procedure Cms2 Output
(File : in String;
Format : in String;
Item Num : in Integer;
Item : in String);

procedure Assign_Char_Substring
(Dest : in String;
Charfrom : in Integer;
Charto : in Integer;
Srce : in String);

procedure Assign_Bit_Substring
(Dest : in Cms2_Word;
Charfrom : in Integer;
Charto : in Integer;
Srce : in Integer);

procedure Swap_Data_Onits
(Source : in Integer;
Receptacle : in Integer);

procedure Shift
(Source
Samount
Receptacl

procedure Shift
(Source
Samount
Receptacl

procedure Shift
(Source
Samount
Receptacl

Data_Dnit_Circular
: in Integer;
: in Integer;

e : out Integer);
Data_Onit_Logical

: in Integer;
: in Integer;

e : out Integer);
Data_Dnit_Algebraic

: in Integer;
: in Integer;

e : out Integer);

function Cms_2_Oddp
(Expr : in Integer)
return Boolean;

M-44

function Cms_2_Evenp
(Expr : in Integer)
return Boolean;

function Cms_2_Invalid
(Expr : in Integer)
return Boolean;

function Cms_2_Valid
(Expr : in Integer)
return Boolean;

— MLEE : 08 November 1994 :
function Load_Time_Func

(Val : in Integer)
return Integer;

function Load_Time_Func
(Val : in Float)
return Float;

function Load_Time_Func
(Val : in String)
return String;

w/ Wu-hung for Implementation Demo:

- MLEE : 09 November 1994 : Built-in function implementation:
based on Wu-hung's summary.

- Absolute value::
-function abs(signed_integer : in integer) return integer;
-function abs(signed_float : in float) return float;

— Bit string selection:
function Bit

(Data Unit : in Cms2 Word;
Starting Bit No : in Integer)

return Integer;
function Bit

(Data Dnit : in Cms2 Word;
Starting Bit No : in Integer;
No Of Bit : in Integer)
return Integer;

— Character string selection:
function Char

(Data Unit : in String;
Starting Char No : in Integer)

return String;
function Char

(Data Unit : in String;
Starting Char No : in Integer;
No Of Chars : in Integer)
return String;

— Bit count::
function Cnt

(Bit_Val : in
return Integer;

Cms2 Word)

— Memory address of a data unit::
function Corad

(Data_Unit : in Cms2_Word)
return Address;

— Scaling::
function Scalf

(Scale_Factor : in
return Cms2_Word;

function Scalf
(Scale_Factor : in
Scale_Val : in
return Cms2 Word;

Integer)

Integer;
Cms2 Word)

— Data type conversion:
function Conf

(Type_Spec : in
return Cms2_Word;

function Conf
(Type_Spec : in
Convert_Val : in
return Cms2 Word;

String)

String;
Cms2 Word)

M-45

— Temporary definition::
—function tdef(type_spec
--function tdef(type_spec

bit_str
function Tdef

(Type_Spec : in
return Integer;

function Tdef
(Type_Spec : in
Bit_Str : in

return Integer;

: in string) return integer;
: in string;
: in integer) return integer;

String)

String;
Integer)

— Remainder::
function Remndr

(Operandl : in
return Float;

Float)

-- Subfile number::
function Fil

(File_Name : in
return Integer;

Cms2 Word)

— Subfile position (record number of current subfile)::
function Pos

(File_Name : in Cms2_Word)
return Integer;

— Length of the current record in the named file::
function Length

(File_Name : in Cms2_Word)
return Integer;

— Logical AND::
function Andf

(Operandl : in Cms2_Word;
Operand2 : in Cms2_Word)
return Cms2_Word;

— function andf(operandl : in unsigned_longword;
operand2 : in unsigned_longword) return cms2 word;

- Logical OR::
unction Orf

(Operandl in Cms2 Word;
Operand2 in Cms2 Word)
return Cms2 Word;

— Logical XOR: :
function Xorf

(Operandl : in
Operand2 : in
return Cms2 Word;

Cms2_Word;
Cms2 Word)

-- One's complementation::
function Compf

(Operand : in Cms2_Word)
return Cms2 Word;

— Fixed point arithmetic function:
Square root::

function Isqrt
(Operand : in Float)
return Float;

Half natural logarithm::
function Hin

(Operand : in Float)
return Float;

Natural logarithm::
function Ln

(Operand : in Float)
return Float;

Exponential::
function Iexp

(Operand : in Float)

M-46

return Float;
sine::

function Isin
(Operand : in Float)
return Float;

cosine::
function Icos

(Operand : in Float)
return Float;

radian to BAMS conversion:
function Bams

(Operand : in Float)
return Float;

radian to BAMS conversion:
function Rad

(Operand : in Float)
return Float;

— Float point arithmetic function::
sine:: function sin (operand : in float) return float;
cosine:: function cos (operand : in float) return float;
tangent:: function tan (operand : in float) return float;
inverse sine:: function asin(operand : in float) return float
inverse cosine:: function acos(operand : in float) return float
inverse tangent: function atan(operand : in float) return float
exponential:: function exp (operand : in float) return float
natual logarithm :function alog(operand : in float) return float
squart root:: function sqrt(operand : in float) return float

inverse sine::
function Asin2

(Operandl : in Float;
Operand2 : in Float)
return Float;

xnverse consine::
function Acos2

(Operandl : in Float;
0perand2 : in Float)
return Float;

inverse tangent::
—function atan2(operandl : in float;
—operand2 : in float) return float;

— Successor::
function Succ

(Operand : in
return Integer;

Integer)

— Successor::
function Pred

(Operand : in
return Integer;

Integer)

— Initial value::
function First

(Status_Type_Name
return Integer;

String)

— Final value::
function Final

(Status_Type_Name
return Integer;

String)

— Logical shift left/right::
function Shiftll

(Shift_Val : in Cms2_Word)
return Cms2_Word;

function Shiftlr
(Shift_Val : in Cms2_Word)
return Cms2 Word;

— Circular shift left/right::
function Shiftcl

(Shift_Val : in Cms2_Word)
return Cms2 Word;

M-47

function Shifter
(Shift_Val : in Cms2_Word)
return Cms2 Word;

function Address_To_Integer is new Unchecked_Conversion
(Source_=> Address,
Target => Integer);

function Address_To_Unsigned is new Unchecked_Conversion
(Source «=> Address,
Target ■=> Unsigned_Longword) ;

procedure Cras2_Exec
(S_Num : in Integer);

procedure Cms2_Exec
(S_Num : in Integer;
Nura : in Float);

function Cms2_Data_Init
(PI : in String;
P2 : in Integer;
P3 : in Integer;
P4 : in Integer)

return Cms2_Word;
function Cms2_Data_Init

(PI : in Integer;
P2 : in Integer;
P3 : in Integer;
P4 : in Integer)

return Cms2_Word;
function Cms2_Data_Init

(PI : in Float;
P2 : in Integer;
P3 : in Integer;
P4 : in Integer)

return Cms2_Word;

end Cms2_To_Ada_Predefined;

M-48

ADA REENGINEERING OF MK-2 CODE BY HAND

— The purpose of this module is to update the Predicted Track Table to the
— current time based on the observed position and speed of the track.

— The original CMS-2 module performs this task for a single indexed entry,
— with some external unit performing the update for the whole table. The
— body of this package iterates over the entire table.
— This module requires another function to be responsible for updating the
— Observed Track Table as well as the Own Ship position.
— Additional reengineering for better integration into the system is desirable.

with Ada.Calendar;
with Ada.Numerics;
package MK2 is

use Ada.Calendar;
•use Ada.Numerics;

MK2_Table_Size: Constant := 99; — allows easy increase of size for track tables

type MK2 Float Type is new Float; — allow to be implementation defined
subtype DistanceJType is MK2_Float_Type; — Distance in yards
subtype Velocity_Type is MK2_Float_Type; — in yards/second
subtype Radians_Type is MK2_Float_Type; — in radians;
subtype LatitudeJType is MK2_Float_Type range -Pi/2.0 .. Pi/2.0; — in radians
subtype Longitude_Type is MK2_Float_Type range -Pi .. Pi; — in radians

Own_Ship_X_Position:
Own_Ship_Y_Position:
Own_Ship_Latitude:
Own_Ship_Longitude:

Distance_Type := 0.0;
Distance_Type := 0.0;

Latitude_Type :=
LongitudeJType := -120.0

+32.0 * Pi/180.0;
Pi/180.0;

type Observed_Track_Table is
record

Time_of_Last_Update: Ada.Calendar.Time;
X:
Y:
X_Velocity:
Y_Velocity:

end record;

DistanceJType;
DistanceJType;
VelocityJType;
VelocityJType;

~ Observed X position
— Observed Y position
— Observed X component of velocity
— Observed Y component of velocity

type Predicted_Track_Table is
record

X:
Y:
Rng:
Brg:
Latitude:
Longitude:

end record;

Distance_Type; ■
Distance_Type; •
Distance_Type; ■
RadiansJType;
LatitudeJType; •
Longitude_Type; ■

Predicted X position
Predicted Y position
Predicted Range from Own Ship
Predicted Bearing from Own Ship
Predicted Latitude
Predicted Longitude

Observed_Track:
Predicted Track:

array
array

(0
(0

MK2_Table_Size)
MK2 Table Size)

of Observed_Track_Table;
of Predicted Track Table;

procedure Conpute_Track_Lat_Lng
(Rng : in
Brg : in
Lat : in
Lng : in
Computed_Latitude : out
Computed_Longitude : out

DistanceJType;
RadiansJType;
LatitudeJType;
LongitudeJType;
LatitudeJType;
LongitudeJType)j

procedure Compute_Bearing_Range
(XI
Yl
X2
Y2
Rng
Brg

procedure Predict_Track_Position

in
in
in
in
out
out

DistanceJType;
DistanceJType;
DistanceJType;
DistanceJType;
DistanceJType;
RadiansJType) ;

M-49

(01d_X ; in DistanceJType;
Oldjf : in DistanceJType;
X_Velocity : in VelocityJType;
Y_Velocity : in VelocityJType;
Time_of_01d_Position : in Ada.Calendar.Time;
NewJC : out DistanceJType;
New_Y : out DistanceJType);

end MK2;

M-50

with Ada.Numerics.Generic_Elementary_Functions;
package body MK2 is

package MK2_Numerics is new Ada.Numerics.Generic_Elementary_Functions
(Float_Type => MK2_Float_Type) ;
use MK2 Numerics;

procedure Pre diet Track Position
(Old X : in Distance Type;
Old Y : in Distance Type;
X Velocity : m Velocity Type;
Y Velocity : m Velocity Type;
Time of Old Position : m Ada.Calendar.Time
New X : out Distance Type;
New Y : out Distance_Type) is

— The Predict_Track_Position procedure will compute a predicted X and Y position
— to the current time based on the old position and the time of observation for
— the old position.

Delta_Time: Duration;

begin
— Compute Fire Control Predicted Track X and Y Positions
Delta_Time := Ada.Calendar.Clock - Time_of_01d_Position;
— Note: Not only handles time across days, but also handles Y2000 problem
— Type Duration is implementation defined; possible exception if too large
— Assume DeltaJTime nominally less than 24 hours?
New_X := 01d_X + X_Velocity * MK2_Float_Type(DeltaJTime);
New_Y := 01d_Y + Y_Velocity * MK2_Float_Type(DeltaJTime);

end Predict_Track_Position;

procedure Compute_Bearing_Range
(XI : in DistanceJType;
Yl : in DistanceJType;
X2 : in DistanceJType;
Y2 : in DistanceJType;
Rng : out DistanceJType;
Brg : out RadiansJType) is

— procedure Compute_Bearing_Range computes the bearing and range from an
— input position (XI, Yl) to the input position (X2, Y2).

begin

— Compute Fire Control System Position Kept Track Range
Rng := Sqrt ((X2-X1)**2 + (Y2-Y1)**2);
If (Rng > 999999.0) then

Rng := 999999.0; — Clip Track range to Maximum????????
end if;

— Compute Fire Control System Position Kept Track Bearing
If (Abs(X2-Xl) < 0.00001) and (Abs(Y2-Yl) < 0.00001) then

— Possible error in original CMS - should use Abs function
Brg := 0.0;

else
Brg := Arctan ((Y2-Y1), (X2-X1));

end if;

end Compute_Bearing_Range;

M-51

procedure Coa$>ute_Track_Lat_Lng
(Rng
Brg
Lat
Lng
Computed_Latitude
Computed_Longitude

out

: in DistanceJType;
: in Radians JType;
: in Latitude JType;
: in Longitude JType;
Latitude JType;

: out Longitude JType) is

— The Compute_Track_Lat_Lng procedure will calculate the latitude and longitude
-- coordinates of a position represented by a range, bearing from the input
— latitude/longitude position.

-- Algorithm =>

begin

Theta = Range / Earth_Radius
Latitude - Arcsin [Sin(Lat)«Cos(Theta) + Cos(Lat)*Sin(Theta)*Cos(Brg)1
Longitude = Arctan [sin(Theta)«Sin(Brg),

Cos(Lat)*Sin(Theta) - Sin(Lat)*Sin(Theta)*Cos(Brg)] Lng;

Earth_Radius:
Theta:
Argl, Arg2:

constant Distance_Type
RadiansJType;
MK2_Float JType;

6 975 563.33; in yards

Theta
Computed Latitude

:= Radians_Type(Rng / Earth_Radius) ;
:= Arcsin (Sin(Lat)*Cos(Theta) +

Cos(Lat)*Sin(Theta)*Cos(Brg));
Argl := Sin(Theta)*Sin(Brg);
Ar92 := Cos(Lat)*Sin(Theta)-Sin(Lat)*Sin(Theta)»Cos(Brg)
If (abs(Argl) < 0.00001) and (abs(Arg2) < 0.00001) then
— Again possible error in original not using abs function

Computed_Longitude :■= 0.0 - Lng;
else

Computed_Longitude := Arctan (Arg2, Argl) - Lng;
end if;
If (Computed_Longitude > Pi) then — Bound longitude from -Pi to Pi.

Computed_Longitude := Computed_Longitude - 2.0*Pi;
end if;
— Note: tangential functions may raise constraint error see RM A.5.1

and ComputeJTrackJLatJLng;

begin — package MK2

— Assumes table for Observed_Track is full
— Then compute table for Predicted_Track
-- Actually in CMS-2 code, some external driver causes the looping for each index
— There is probably a mechanism to ignore null Tracks in the table

for I in PredictedJTrack'range loop — Original CMS-2 performs this for one Index

Compute Predicted Track Position
Predict_Track_Position

(01d_X
01d_Y
X_Velocity
Y_Velocity
Time_of_01d_Position
New_X
New Y

Observed_Track(I).X,
ObservedJTrack(I).Y,
ObservedJTrack(I).X_Velocity,
ObservedJTrack(I).Y_Velocity,
Observed_Track(I).Time_Of_Last_0pdate,
Predicted Track(I).x,

=> Predicted_Track(I).Y);

— Compute predicted range and bearing from own ship's position
Coapute_Bearing_Range

(XI =>
Yl =>
X2 =>
Y2 =>
Rng =>
Brg =>

Own_Ship_X_Position,
Own_Ship_Y_Position,
Predicted_Track(I) .X,
PredictedJTrack(I).Y,
PredictedJTrack(I).Rng,
PredictedJTrack(I).Brg)

— Compute Predicted Track Latitude and Longitude
Compute_Track_Lat_Lng

(R^g => PredictedJTrack(I).Rng,
Brg => PredictedJTrack(I).Brg,

M-52

Lat => Own_Ship_Latitude,
Lng => Own_Ship_Longitude,
Computed_Latitude => PredictedJTrack(I).Latitude,
Computed_Longitude => Predicted_Track(I).Longitude);

end loop;
end MK2;

M-53

Happing of CMS-2 names to Ada 95 names

2.

Identifiers
COSBRG
C0SLAT1
COSTHET
FKPI
FKPI2
FTCONDAT

FTCSS
FTPKSS
FVBRG
FVEQRADG
FVRNG
FVTGTLAT
FVTGTLON
FVTIME
FVTXP 1
FVTXP 2
FVTXV
FVTYP 1
FVTYP 2
FVTYV
ICNX
RBLLTHET
SINBRG
SINLAT1
SINTHET
SÜDVBRG
SÜDVLAT1
SÜDVLAT2
SODVLOK1
SDDVL0N2
SDDVRNG
SODVDTME
SÜDVOSLT
SÜDVOSLN
SUDVOSXP
SODVOSYP
SUDVRAD1
SUDVRAD2
SODVTIME
TEMPARG
TGTLAT
TGTLONG
VRAD1
VRAD2

Procedures
SODPATAN
SODPKFCS
SDDPRBLL

CMS-2 Math functions
Ada.Numerics

Child

intermediate not used
intermediate not used
intermediate not used
becomes Pi [Ada.Numerics.Pi]
becomes 2*Pi; compiler will optimize
becomes Earth_Radius
Apparently constant maintained in a table of CMS-2 constants
CCCC translator converts to (array 0..98, 0..0) of CMS2 Word
becomes Track ~
becomes PredictedJTrack
becomes Bearing in PredictedJTrack
becomes Earth_Radius
becomes Rng in PredictedJTrack
becomes Latitude in PredictedJTrack
becomes Longitude in PredictedJTrack
becomes Time_of_LastJdpdate in ObservedJTrack
becomes X in Observed_Track
becomes X in Predicted_Track
becomes X_Velocity in ObservedJTrack
becomes Y in ObservedJTrack
becomes Y in PredictedJTrack
becomes YJ/elocity in ObservedJTrack
becomes I
becomes Theta
intermediate not used
intermediate not used
intermediate not used
becomes Brg
becomes Lat
becomes Computed_Latitude
becomes Lng
becomes Computed_longitude
becomes Rng
becomes DeltaJTime
becomes Own_Ship_Latitude
becomes Own_Ship_Longitude
becomes Own_Ship_X_Position
becomes Own_Ship_Y_Position
becomes null (an intermediate computation)
becomes null (an intermediate computation)
becomes comes the function Ada.Calendar.Clock
intermediate not used
intermediate not used
intermediate not used
becomes null (an intermediate computation)
becomes null (an intermediate computation)

not needed as converted to simple if then else test
becomes Predict_Track_Position and Compute_Bearing Range
becomes Compute_Track_Lat_Lng

provided by Ada 95 Package MK2_Numerics generic
defines Pi, e,
package defines
Sqrt, Log, Exp, **,
Sin, Cos, Tan, Cot,
Arcsin, Arccos, Arctan, Arccot
Sigh, Cosh, Tanh, Coth
Arcsign, Arccosh, Arctanh, Coth

M-54

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1997

3. REPORT TYPE AND DATES COVERED

Final: 30 June 1997
4. TITLE AND SUBTITLE

CMS-2 TO ADA TRANSLATOR EVALUATION FINAL REPORT
5. FUNDING NUMBERS

PE: 0602234N
AN: DN088690
WU: ECB3 6. AUTHOR(S)

NRaD: Ron Iwamiya, Hans Mumm, Bob Ollerton, Bryan Riegle
SPAWAR: Currie Colket

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division (NRaD)
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

TD2984

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22219-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The objective of this evaluation was to determine the maturity of the CMS-2 to Ada translators and associated
tools, to determine the capabilities of these translators, and to provide information to CMS-2 project managers to
assist them in the evaluation of costs and risks of translating CMS-2 to Ada.

14. SUBJECT TERMS

Mission Area: Command, Control, and Communications

software metrics Ada translators
source code analysis

15. NUMBER OF PAGES

269

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OFABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

NSN 7540-01-280-5500 Standard form 298 (FRONT)

21a NAVE OF RESPONSIBLE INDIVIDUAL

Hans Mumm

21b. TELEPHONE (include Ares Code)

(619)553-4004
e-mail: mumm@nosc.mil

21c. OFFICE SYMBOL

CodeD4122

NS'.'7S4:>-01-2e:-5E:»
Standard form 298 (BACK)

INITIAL DISTRIBUTION

Code D0012 Patent Counsel (1)
CodeD0271 Archive/Stock (6)
Code D0274 Library (2)
Code D027 M. E. Cathcart (1)
CodeD0271 D. Richter (1)
Code D4122 H. Mumm (20)

Defense Technical Information Center
Fort Belvoir, VA 22060-6218 (4)

NCCOSC Washington Liaison Office
Arlington, VA 22245-5200

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and Development
Information Center (NARDIC)

Arlington, VA 22244-5114

GIDEP Operations Center
Corona, CA 91718-8000

